Flaxseed-derived peptide, Ile-Pro-Pro-Phe (IPPF), ameliorates hepatic cholesterol metabolism to treat metabolic dysfunction-associated steatotic liver disease by promoting cholesterol conversion and excretion.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2025-03-17 DOI:10.1039/d4fo04478a
Xingyu Yuan, Yifeng Hou, Narisu Qin, Lu Xiang, Zhe Jiang, Xiaolan Bao
{"title":"Flaxseed-derived peptide, Ile-Pro-Pro-Phe (IPPF), ameliorates hepatic cholesterol metabolism to treat metabolic dysfunction-associated steatotic liver disease by promoting cholesterol conversion and excretion.","authors":"Xingyu Yuan, Yifeng Hou, Narisu Qin, Lu Xiang, Zhe Jiang, Xiaolan Bao","doi":"10.1039/d4fo04478a","DOIUrl":null,"url":null,"abstract":"<p><p>Flaxseed-derived peptide IPPF has been reported to effectively inhibit cholesterol micellization and reduce cholesterol accumulation <i>in vitro</i>. However, its effects on hepatic cholesterol accumulation and related dysfunction-associated steatotic liver disease (MASLD) <i>in vivo</i>, along with the underlying mechanisms and specific molecular targets, remain unclear. This study investigated the impact of IPPF on hepatic cholesterol accumulation to ameliorate MASLD and its potential mechanisms <i>in vivo</i>. Six-week-old male C57BL/6J mice were fed a high-cholesterol, high-fat diet and treated with different doses of IPPF <i>via</i> oral gavage for six weeks. IPPF intervention significantly reduced hepatic cholesterol levels and oxidative stress damage while increasing fecal cholesterol and bile acid excretion. Non-targeted metabolomics analysis revealed that IPPF primarily affected pathways related to ABC transporters and bile acid metabolism. IPPF intake upregulated the mRNA expression of <i>Abcg5</i>/<i>8</i> and <i>Cyp7a1</i> in the liver. Molecular docking, dynamics and Surface plasmon resonance (SPR) simulations demonstrated that IPPF binds strongly to ABCG5/8 and CYP7A1, forming stable complexes. Furthermore, cholesterol accumulation and MASLD in HepG2 cells induced by palmitic acid (PA) was alleviated by IPPF, but this effect was partly stopped when CYP7A1 or ABCG5/8 was inhibited. In conclusion, flaxseed-derived peptide IPPF targets CYP7A1 and ABCG5/8, promoting cholesterol conversion and excretion, thereby reducing hepatic cholesterol accumulation and offering a potential nutritional treatment for MASLD. IPPF can be used as a novel dietary cholesterol-lowering functional ingredient. This study provides a scientific basis and new perspective for the development of cholesterol-lowering functional foods and dietary supplements.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04478a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Flaxseed-derived peptide IPPF has been reported to effectively inhibit cholesterol micellization and reduce cholesterol accumulation in vitro. However, its effects on hepatic cholesterol accumulation and related dysfunction-associated steatotic liver disease (MASLD) in vivo, along with the underlying mechanisms and specific molecular targets, remain unclear. This study investigated the impact of IPPF on hepatic cholesterol accumulation to ameliorate MASLD and its potential mechanisms in vivo. Six-week-old male C57BL/6J mice were fed a high-cholesterol, high-fat diet and treated with different doses of IPPF via oral gavage for six weeks. IPPF intervention significantly reduced hepatic cholesterol levels and oxidative stress damage while increasing fecal cholesterol and bile acid excretion. Non-targeted metabolomics analysis revealed that IPPF primarily affected pathways related to ABC transporters and bile acid metabolism. IPPF intake upregulated the mRNA expression of Abcg5/8 and Cyp7a1 in the liver. Molecular docking, dynamics and Surface plasmon resonance (SPR) simulations demonstrated that IPPF binds strongly to ABCG5/8 and CYP7A1, forming stable complexes. Furthermore, cholesterol accumulation and MASLD in HepG2 cells induced by palmitic acid (PA) was alleviated by IPPF, but this effect was partly stopped when CYP7A1 or ABCG5/8 was inhibited. In conclusion, flaxseed-derived peptide IPPF targets CYP7A1 and ABCG5/8, promoting cholesterol conversion and excretion, thereby reducing hepatic cholesterol accumulation and offering a potential nutritional treatment for MASLD. IPPF can be used as a novel dietary cholesterol-lowering functional ingredient. This study provides a scientific basis and new perspective for the development of cholesterol-lowering functional foods and dietary supplements.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信