Design and Analysis of Permanent Magnet Arc-Linear Motor Having Different Stator-Permanent Magnet Arrangements

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Zhenbao Pan;Jiwen Zhao;Kaiwei Wei;Yiming Shen
{"title":"Design and Analysis of Permanent Magnet Arc-Linear Motor Having Different Stator-Permanent Magnet Arrangements","authors":"Zhenbao Pan;Jiwen Zhao;Kaiwei Wei;Yiming Shen","doi":"10.1109/TPS.2025.3534983","DOIUrl":null,"url":null,"abstract":"Permanent magnet (PM) linear motor is widely used in the electromagnetic launch system due to the merits of high thrust and rapid response. Inheriting the advantages of linear motor, the PM arc-linear motor (PMAM) has been recognized as an eminent competitor for driving servo turntables and large telescope. This article designs a dual-PM excited PMAM (DPM-PMAM) having different PM arrangements and three-unit distributed complementary structure. Benefiting from the special stator-PM layouts, the DPM-PMAM exhibits the essential flux concentration effect, which contributes to enhance the torque capability. The motor topology and working principle of the studied DPM-PMAM are introduced. The feasible stator slot/rotor pole combinations and the major design parameters are optimized for improving electromagnetic performances. Then, the DPM-PMAM is quantitatively compared with the slot-PM excited PMAM (SPM-PMAM) and the yoke-PM excited PMAM (YPM-PMAM) based on the optimal designs. By comparison, it is found that the DPM-PMAM shows the improved average torque and good overload capability. Finally, the 2-D finite-element (FE) predicted results are validated by 3-D FE results.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"430-438"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10904122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10904122/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Permanent magnet (PM) linear motor is widely used in the electromagnetic launch system due to the merits of high thrust and rapid response. Inheriting the advantages of linear motor, the PM arc-linear motor (PMAM) has been recognized as an eminent competitor for driving servo turntables and large telescope. This article designs a dual-PM excited PMAM (DPM-PMAM) having different PM arrangements and three-unit distributed complementary structure. Benefiting from the special stator-PM layouts, the DPM-PMAM exhibits the essential flux concentration effect, which contributes to enhance the torque capability. The motor topology and working principle of the studied DPM-PMAM are introduced. The feasible stator slot/rotor pole combinations and the major design parameters are optimized for improving electromagnetic performances. Then, the DPM-PMAM is quantitatively compared with the slot-PM excited PMAM (SPM-PMAM) and the yoke-PM excited PMAM (YPM-PMAM) based on the optimal designs. By comparison, it is found that the DPM-PMAM shows the improved average torque and good overload capability. Finally, the 2-D finite-element (FE) predicted results are validated by 3-D FE results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信