Cost-effective and low-carbon solutions for holistic rural building renovation in severe cold climate

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Xinyi Hu , Juha Jokisalo , Risto Kosonen , Matti Lehtonen
{"title":"Cost-effective and low-carbon solutions for holistic rural building renovation in severe cold climate","authors":"Xinyi Hu ,&nbsp;Juha Jokisalo ,&nbsp;Risto Kosonen ,&nbsp;Matti Lehtonen","doi":"10.1016/j.enbuild.2025.115609","DOIUrl":null,"url":null,"abstract":"<div><div>Rural houses in China’s severe cold climate face pressing challenges due to harsh winter conditions, outdated construction, and inefficient energy systems, leading to high energy costs and poor indoor air quality. This study proposed a holistic renovation approach, incorporating key renovation measures across building envelope upgrade, ventilation improvement, and distributed energy system application. Simulation-based multi-objective optimization was utilized to explore optimal solutions, which balanced two key objectives: minimizing both net present value of life cycle cost and CO<sub>2</sub> emissions of energy use. Future scenarios assessed the sensitivity of optimal solutions to factor changes regarding thermal comfort, economic, and energy environmental impacts. Results indicate that a biomass pellet boiler achieves the greatest emission reduction, followed by PV-combined air-to-water heat pump, natural gas heater, PV-combined electric boiler and electric boiler, lowering CO<sub>2</sub> emissions from 109.4 kg CO<sub>2</sub>/m<sup>2</sup> to 10.7–53.4 kg CO<sub>2</sub>/m<sup>2</sup>. The holistic renovation reduces emissions more efficiently than only focusing on envelope upgrades. Cases with heat pump and biomass pellet boiler even show lower life cycle cost than standard envelope renovation. These findings offer valuable insights for decision-makers, supporting the adoption of clean energy solutions in rural areas facing extreme climatic conditions.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"336 ","pages":"Article 115609"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003391","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rural houses in China’s severe cold climate face pressing challenges due to harsh winter conditions, outdated construction, and inefficient energy systems, leading to high energy costs and poor indoor air quality. This study proposed a holistic renovation approach, incorporating key renovation measures across building envelope upgrade, ventilation improvement, and distributed energy system application. Simulation-based multi-objective optimization was utilized to explore optimal solutions, which balanced two key objectives: minimizing both net present value of life cycle cost and CO2 emissions of energy use. Future scenarios assessed the sensitivity of optimal solutions to factor changes regarding thermal comfort, economic, and energy environmental impacts. Results indicate that a biomass pellet boiler achieves the greatest emission reduction, followed by PV-combined air-to-water heat pump, natural gas heater, PV-combined electric boiler and electric boiler, lowering CO2 emissions from 109.4 kg CO2/m2 to 10.7–53.4 kg CO2/m2. The holistic renovation reduces emissions more efficiently than only focusing on envelope upgrades. Cases with heat pump and biomass pellet boiler even show lower life cycle cost than standard envelope renovation. These findings offer valuable insights for decision-makers, supporting the adoption of clean energy solutions in rural areas facing extreme climatic conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信