Identifying microbial proteins and changes in proteome in spontaneously fermented pulse protein isolates

IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY
Prem Prakash Das , Caishuang Xu , Yuping Lu , Enyu Liu , Zahra Jafarian , Takuji Tanaka , Darren Korber , Michael Nickerson , Nandhakishore Rajagopalan
{"title":"Identifying microbial proteins and changes in proteome in spontaneously fermented pulse protein isolates","authors":"Prem Prakash Das ,&nbsp;Caishuang Xu ,&nbsp;Yuping Lu ,&nbsp;Enyu Liu ,&nbsp;Zahra Jafarian ,&nbsp;Takuji Tanaka ,&nbsp;Darren Korber ,&nbsp;Michael Nickerson ,&nbsp;Nandhakishore Rajagopalan","doi":"10.1016/j.fochms.2025.100254","DOIUrl":null,"url":null,"abstract":"<div><div>Pulses are a sustainable source of plant-based proteins, but they often fall short in terms of sensory attributes and functionality. Fermentation has been investigated as a natural food processing method to address these limitations. Spontaneous fermentation, where native microflora grow without the addition of specific microbes, has been traditionally used in food processing by various cultures around the world. However, there is a knowledge gap regarding the changes that occur in protein composition during spontaneous fermentation. This study used capillary gel electrophoresis and liquid chromatography coupled to tandem mass spectrometry to examine the changes in protein size distribution, identify microbial proteins and understand proteome-level changes that occurred during the spontaneous fermentation of three protein isolate substrates: chickpea, faba bean, and lentil. The findings revealed that proteins from a variety of bacterial and fungal species were identified in all substrates, and the number and quantity of these microbial proteins increased during spontaneous fermentation. This rise in microbial protein content was associated with the hydrolysis of proteins from the pulse substrates, which could potentially alter the functionality of the protein ingredient.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"10 ","pages":"Article 100254"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566225000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulses are a sustainable source of plant-based proteins, but they often fall short in terms of sensory attributes and functionality. Fermentation has been investigated as a natural food processing method to address these limitations. Spontaneous fermentation, where native microflora grow without the addition of specific microbes, has been traditionally used in food processing by various cultures around the world. However, there is a knowledge gap regarding the changes that occur in protein composition during spontaneous fermentation. This study used capillary gel electrophoresis and liquid chromatography coupled to tandem mass spectrometry to examine the changes in protein size distribution, identify microbial proteins and understand proteome-level changes that occurred during the spontaneous fermentation of three protein isolate substrates: chickpea, faba bean, and lentil. The findings revealed that proteins from a variety of bacterial and fungal species were identified in all substrates, and the number and quantity of these microbial proteins increased during spontaneous fermentation. This rise in microbial protein content was associated with the hydrolysis of proteins from the pulse substrates, which could potentially alter the functionality of the protein ingredient.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry Molecular Sciences
Food Chemistry Molecular Sciences Agricultural and Biological Sciences-Food Science
CiteScore
6.00
自引率
0.00%
发文量
83
审稿时长
82 days
期刊介绍: Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry. Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods. The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries. Topics include: Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism Quality, safety, authenticity and traceability of foods and packaging materials Valorisation of food waste arising from processing and exploitation of by-products Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信