Image texture feature fusion enhancement for bearing fault diagnosis based on maximum gradient

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Yongjian Sun, Gang Yu, Wei Wang
{"title":"Image texture feature fusion enhancement for bearing fault diagnosis based on maximum gradient","authors":"Yongjian Sun,&nbsp;Gang Yu,&nbsp;Wei Wang","doi":"10.1016/j.ress.2025.111009","DOIUrl":null,"url":null,"abstract":"<div><div>In modern manufacturing industry, mechanical equipment plays a crucial role. In order to address the difficulty of signal feature extraction in mechanical equipment, this paper proposes a image Texture Feature Fusion Enhancement (TFFE) method based on maximum gradient. A mathematical transformation method is used to convert one-dimensional time series into two forms of images: symmetrized dot pattern and scalogram. The texture features are obtained by calculating the maximum gradient of the two types of images. The proposed image Texture Feature Fusion Enhancement (TFFE) method is used to combine different images and enhance the texture features. Finally, the Darknet53 network is used as the image classification method to conduct intelligent classification of rolling bearing faults. The classification effect of the method is verified by a series of experiments, in which the validity of the images used in different image conditions is verified, and the network used in different network conditions show better classification performance. The method’s ability to resist noise is also validated in experiments under different noise conditions. The experimental results show that the proposed image enhancement method can improve fault features in the image and maintain good diagnostic performance.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"260 ","pages":"Article 111009"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025002108","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

In modern manufacturing industry, mechanical equipment plays a crucial role. In order to address the difficulty of signal feature extraction in mechanical equipment, this paper proposes a image Texture Feature Fusion Enhancement (TFFE) method based on maximum gradient. A mathematical transformation method is used to convert one-dimensional time series into two forms of images: symmetrized dot pattern and scalogram. The texture features are obtained by calculating the maximum gradient of the two types of images. The proposed image Texture Feature Fusion Enhancement (TFFE) method is used to combine different images and enhance the texture features. Finally, the Darknet53 network is used as the image classification method to conduct intelligent classification of rolling bearing faults. The classification effect of the method is verified by a series of experiments, in which the validity of the images used in different image conditions is verified, and the network used in different network conditions show better classification performance. The method’s ability to resist noise is also validated in experiments under different noise conditions. The experimental results show that the proposed image enhancement method can improve fault features in the image and maintain good diagnostic performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信