A generative model-based coevolutionary training framework for noise-tolerant softsensors in wastewater treatment processes

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yu Peng, Erchao Li
{"title":"A generative model-based coevolutionary training framework for noise-tolerant softsensors in wastewater treatment processes","authors":"Yu Peng, Erchao Li","doi":"10.1007/s40747-025-01845-5","DOIUrl":null,"url":null,"abstract":"<p>Data-driven softsensors have gained widespread application in process monitoring and quality prediction, offering advantages over traditional measurement techniques by mitigating their limitations and costs. However, the effectiveness of softsensor models is often hindered by noise in data acquisition, posing significant challenges for model training. To tackle this issue, this study introduces a coevolutionary training framework based on generative models to mitigate the impact of noise corruption. The framework employs a denoising variational autoencoder to extract global and local features from auxiliary data, enhancing population distribution and constructing a deep nonlinear representation to counter noise effects. Additionally, a dual population coding method inspired by evolutionary computation is proposed, enabling the coevolution of network parameters and structure. The proposed multiobjective evolutionary network optimization with denoising strategy (MENO-D) demonstrated exceptional performance in various experiments. On a water quality prediction dataset, the MENO-D-trained softsensor model achieved the lowest prediction error under 10% and 20% noise interference. Further, on the WWTP benchmark dataset across three weather conditions, MENO-D-trained softsensor model exhibited competitive accuracy and robustness.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"25 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01845-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven softsensors have gained widespread application in process monitoring and quality prediction, offering advantages over traditional measurement techniques by mitigating their limitations and costs. However, the effectiveness of softsensor models is often hindered by noise in data acquisition, posing significant challenges for model training. To tackle this issue, this study introduces a coevolutionary training framework based on generative models to mitigate the impact of noise corruption. The framework employs a denoising variational autoencoder to extract global and local features from auxiliary data, enhancing population distribution and constructing a deep nonlinear representation to counter noise effects. Additionally, a dual population coding method inspired by evolutionary computation is proposed, enabling the coevolution of network parameters and structure. The proposed multiobjective evolutionary network optimization with denoising strategy (MENO-D) demonstrated exceptional performance in various experiments. On a water quality prediction dataset, the MENO-D-trained softsensor model achieved the lowest prediction error under 10% and 20% noise interference. Further, on the WWTP benchmark dataset across three weather conditions, MENO-D-trained softsensor model exhibited competitive accuracy and robustness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信