Mcaaco: a multi-objective strategy heuristic search algorithm for solving capacitated vehicle routing problems

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanling Chen, Jingyi Wei, Tao Luo, Jie Zhou
{"title":"Mcaaco: a multi-objective strategy heuristic search algorithm for solving capacitated vehicle routing problems","authors":"Yanling Chen, Jingyi Wei, Tao Luo, Jie Zhou","doi":"10.1007/s40747-025-01826-8","DOIUrl":null,"url":null,"abstract":"<p>Vehicle routing is a critical issue in the logistics and distribution industry. In practical applications, optimizing vehicle capacity allocation can significantly improve route optimization performance and service coverage. However, solving this problem remains challenging due to the complex constraints involved. Therefore, to address this real-world challenge, a novel intelligent optimization method, multi-objective capacity adjustment ant colony optimization algorithm (MCAACO), is proposed, which integrates advanced multi-objective optimization strategies, including capacity adjustment operators and crossover operators. Combined with pheromone updating and Pareto front-end optimization, the method effectively resolves the conflict between vehicle capacity constraints and multi-objective optimization. To further enhance the algorithm’s performance, dynamic pheromone updating mechanisms and elite individual retention strategies are proposed. Additionally, an adaptive parameter adjustment strategy is designed to balance global search and local exploitation capabilities. Through a series of experiments, it is demonstrated that compared to multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II), and multi-objective sparrow search algorithm (MOSSA), the proposed MCAACO significantly reduces travel paths by an average of 3.05% and increases vehicle service coverage by an average of 3.2%, while satisfying vehicle capacity constraints. Experimental indicators demonstrate that the breakthrough algorithm significantly addresses the issues of high costs and low efficiency prevalent in the practical logistics distribution industry.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"69 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01826-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle routing is a critical issue in the logistics and distribution industry. In practical applications, optimizing vehicle capacity allocation can significantly improve route optimization performance and service coverage. However, solving this problem remains challenging due to the complex constraints involved. Therefore, to address this real-world challenge, a novel intelligent optimization method, multi-objective capacity adjustment ant colony optimization algorithm (MCAACO), is proposed, which integrates advanced multi-objective optimization strategies, including capacity adjustment operators and crossover operators. Combined with pheromone updating and Pareto front-end optimization, the method effectively resolves the conflict between vehicle capacity constraints and multi-objective optimization. To further enhance the algorithm’s performance, dynamic pheromone updating mechanisms and elite individual retention strategies are proposed. Additionally, an adaptive parameter adjustment strategy is designed to balance global search and local exploitation capabilities. Through a series of experiments, it is demonstrated that compared to multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II), and multi-objective sparrow search algorithm (MOSSA), the proposed MCAACO significantly reduces travel paths by an average of 3.05% and increases vehicle service coverage by an average of 3.2%, while satisfying vehicle capacity constraints. Experimental indicators demonstrate that the breakthrough algorithm significantly addresses the issues of high costs and low efficiency prevalent in the practical logistics distribution industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信