Splat-Nav: Safe Real-Time Robot Navigation in Gaussian Splatting Maps

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Timothy Chen;Ola Shorinwa;Joseph Bruno;Aiden Swann;Javier Yu;Weijia Zeng;Keiko Nagami;Philip Dames;Mac Schwager
{"title":"Splat-Nav: Safe Real-Time Robot Navigation in Gaussian Splatting Maps","authors":"Timothy Chen;Ola Shorinwa;Joseph Bruno;Aiden Swann;Javier Yu;Weijia Zeng;Keiko Nagami;Philip Dames;Mac Schwager","doi":"10.1109/TRO.2025.3552348","DOIUrl":null,"url":null,"abstract":"We present Splat-Nav, a real-time robot navigation pipeline for Gaussian splatting (GSplat) scenes, a powerful new 3-D scene representation. Splat-Nav consists of two components: first, Splat-Plan, a safe planning module, and second, Splat-Loc, a robust vision-based pose estimation module. Splat-Plan builds a safe-by-construction polytope corridor through the map based on mathematically rigorous collision constraints and then constructs a Bézier curve trajectory through this corridor. Splat-Loc provides real-time recursive state estimates given only an RGB feed from an on-board camera, leveraging the point-cloud representation inherent in GSplat scenes. Working together, these modules give robots the ability to recursively replan smooth and safe trajectories to goal locations. Goals can be specified with position coordinates, or with language commands by using a semantic GSplat. We demonstrate improved safety compared to point cloud-based methods in extensive simulation experiments. In a total of 126 hardware flights, we demonstrate equivalent safety and speed compared to motion capture and visual odometry, but without a manual frame alignment required by those methods. We show online replanning at more than 2 Hz and pose estimation at about 25 Hz, an order of magnitude faster than neural radiance field-based navigation methods, thereby enabling real-time navigation.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2765-2784"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930696/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present Splat-Nav, a real-time robot navigation pipeline for Gaussian splatting (GSplat) scenes, a powerful new 3-D scene representation. Splat-Nav consists of two components: first, Splat-Plan, a safe planning module, and second, Splat-Loc, a robust vision-based pose estimation module. Splat-Plan builds a safe-by-construction polytope corridor through the map based on mathematically rigorous collision constraints and then constructs a Bézier curve trajectory through this corridor. Splat-Loc provides real-time recursive state estimates given only an RGB feed from an on-board camera, leveraging the point-cloud representation inherent in GSplat scenes. Working together, these modules give robots the ability to recursively replan smooth and safe trajectories to goal locations. Goals can be specified with position coordinates, or with language commands by using a semantic GSplat. We demonstrate improved safety compared to point cloud-based methods in extensive simulation experiments. In a total of 126 hardware flights, we demonstrate equivalent safety and speed compared to motion capture and visual odometry, but without a manual frame alignment required by those methods. We show online replanning at more than 2 Hz and pose estimation at about 25 Hz, an order of magnitude faster than neural radiance field-based navigation methods, thereby enabling real-time navigation.
飞溅导航:安全的实时机器人导航在高斯飞溅地图
我们提出了spat - nav,一个实时机器人导航管道高斯飞溅(GSplat)场景,一个强大的新的三维场景表示。Splat-Nav由两个部分组成:第一,Splat-Plan,一个安全的规划模块,第二,Splat-Loc,一个鲁棒的基于视觉的姿态估计模块。Splat-Plan基于数学上严格的碰撞约束,通过地图构建一个安全的多边形走廊,然后通过这个走廊构建一个bsamizier曲线轨迹。Splat-Loc提供实时递归状态估计,仅给出来自机载摄像机的RGB馈送,利用GSplat场景中固有的点云表示。这些模块一起工作,使机器人能够递归地重新规划平滑和安全的轨迹到目标位置。目标可以通过位置坐标来指定,也可以通过使用语义GSplat来指定语言命令。在广泛的模拟实验中,我们证明了与基于点云的方法相比,安全性得到了提高。在总共126个硬件飞行中,我们展示了与运动捕捉和视觉里程计相比的同等安全性和速度,但没有这些方法所需的手动框架对齐。我们展示了超过2hz的在线重新规划和约25hz的姿态估计,比基于神经辐射场的导航方法快一个数量级,从而实现实时导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信