{"title":"High Resolution, Large Area Vision-Based Tactile Sensing Based on a Novel Piezoluminescent Skin","authors":"Ruxiang Jiang;Lanhui Fu;Yanan Li;Hareesh Godaba","doi":"10.1109/TRO.2025.3552327","DOIUrl":null,"url":null,"abstract":"The ability to precisely perceive external physical interactions would enable robots to interact effectively with the environment and humans. While vision-based tactile sensing has improved robotic grippers, it is challenging to realize high resolution vision-based tactile sensing in robot arms due to presence of curved surfaces, difficulty in uniform illumination, and large distance of sensing area from the cameras. In this article, we propose a novel piezoluminescent skin that transduces external applied pressures into changes in light intensity on the other side for viewing by a camera for pressure estimation. By engineering elastomer layers with specific optical properties and integrating a flexible electroluminescent panel as a light source, we develop a compact tactile sensing layer that resolves the layout issues in curved surfaces. We achieved multipoint pressure estimation over an expansive area of 502 cm<sup>2</sup> with high spatial resolution, a two-point discrimination distance of 3 mm horizontally and 5 mm vertically which is comparable to that of human fingers as well as a high localization accuracy (RMSE of 1.92 mm). These promising attributes make this tactile sensing technique suitable for use in robot arms and other applications requiring high resolution tactile information over a large area.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2477-2494"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930701/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to precisely perceive external physical interactions would enable robots to interact effectively with the environment and humans. While vision-based tactile sensing has improved robotic grippers, it is challenging to realize high resolution vision-based tactile sensing in robot arms due to presence of curved surfaces, difficulty in uniform illumination, and large distance of sensing area from the cameras. In this article, we propose a novel piezoluminescent skin that transduces external applied pressures into changes in light intensity on the other side for viewing by a camera for pressure estimation. By engineering elastomer layers with specific optical properties and integrating a flexible electroluminescent panel as a light source, we develop a compact tactile sensing layer that resolves the layout issues in curved surfaces. We achieved multipoint pressure estimation over an expansive area of 502 cm2 with high spatial resolution, a two-point discrimination distance of 3 mm horizontally and 5 mm vertically which is comparable to that of human fingers as well as a high localization accuracy (RMSE of 1.92 mm). These promising attributes make this tactile sensing technique suitable for use in robot arms and other applications requiring high resolution tactile information over a large area.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.