Diego Martinez-Baselga;Eduardo Sebastián;Eduardo Montijano;Luis Riazuelo;Carlos Sagüés;Luis Montano
{"title":"AVOCADO: Adaptive Optimal Collision Avoidance Driven by Opinion","authors":"Diego Martinez-Baselga;Eduardo Sebastián;Eduardo Montijano;Luis Riazuelo;Carlos Sagüés;Luis Montano","doi":"10.1109/TRO.2025.3552350","DOIUrl":null,"url":null,"abstract":"We present AdaptiVe Optimal Collision Avoidance Driven by Opinion (AVOCADO), a novel navigation approach to address holonomic robot collision avoidance when the robot does not know how cooperative the other agents in the environment are. AVOCADO departs from a velocity obstacle's (VO) formulation akin to the optimal reciprocal collision avoidance method. However, instead of assuming reciprocity, it poses an adaptive control problem to adapt to the cooperation level of other robots and agents in real time. This is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, we leverage tools from the opinion dynamics formulation to naturally avoid the deadlocks in geometrically symmetric scenarios that typically suffer VO-based planners. Extensive numerical simulations show that AVOCADO surpasses existing motion planners in mixed cooperative/noncooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2495-2511"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10930712","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930712/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present AdaptiVe Optimal Collision Avoidance Driven by Opinion (AVOCADO), a novel navigation approach to address holonomic robot collision avoidance when the robot does not know how cooperative the other agents in the environment are. AVOCADO departs from a velocity obstacle's (VO) formulation akin to the optimal reciprocal collision avoidance method. However, instead of assuming reciprocity, it poses an adaptive control problem to adapt to the cooperation level of other robots and agents in real time. This is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, we leverage tools from the opinion dynamics formulation to naturally avoid the deadlocks in geometrically symmetric scenarios that typically suffer VO-based planners. Extensive numerical simulations show that AVOCADO surpasses existing motion planners in mixed cooperative/noncooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.