{"title":"Strategic Decision-Making in Multiagent Domains: A Weighted Constrained Potential Dynamic Game Approach","authors":"Maulik Bhatt;Yixuan Jia;Negar Mehr","doi":"10.1109/TRO.2025.3552325","DOIUrl":null,"url":null,"abstract":"In interactive multiagent settings, decision-making and planning are challenging mainly due to the agents' interconnected objectives. Dynamic game theory offers a formal framework for analyzing such intricacies. Yet, solving constrained dynamic games and determining the interaction outcome in the form of generalized Nash equilibria (GNE) pose computational challenges due to the need for solving constrained coupled optimal control problems. In this article, we address this challenge by proposing to leverage the special structure of many real-world multiagent interactions. More specifically, our key idea is to leverage constrained dynamic potential games, which are games for which GNE can be found by solving a single constrained optimal control problem associated with minimizing the potential function. We argue that constrained dynamic potential games can effectively facilitate interactive decision-making in many multiagent interactions. We will identify structures in realistic multiagent interactive scenarios that can be transformed into weighted constrained potential dynamic games (WCPDGs). We will show that the GNE of the resulting WCPDG can be obtained by solving a single constrained optimal control problem. We will demonstrate the effectiveness of the proposed method through various simulation studies and show that we achieve significant improvements in solve time compared to state-of-the-art game solvers. We further provide experimental validation of our proposed method in a navigation setup involving two quadrotors carrying a rigid object while avoiding collisions with two humans.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2749-2764"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930683/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In interactive multiagent settings, decision-making and planning are challenging mainly due to the agents' interconnected objectives. Dynamic game theory offers a formal framework for analyzing such intricacies. Yet, solving constrained dynamic games and determining the interaction outcome in the form of generalized Nash equilibria (GNE) pose computational challenges due to the need for solving constrained coupled optimal control problems. In this article, we address this challenge by proposing to leverage the special structure of many real-world multiagent interactions. More specifically, our key idea is to leverage constrained dynamic potential games, which are games for which GNE can be found by solving a single constrained optimal control problem associated with minimizing the potential function. We argue that constrained dynamic potential games can effectively facilitate interactive decision-making in many multiagent interactions. We will identify structures in realistic multiagent interactive scenarios that can be transformed into weighted constrained potential dynamic games (WCPDGs). We will show that the GNE of the resulting WCPDG can be obtained by solving a single constrained optimal control problem. We will demonstrate the effectiveness of the proposed method through various simulation studies and show that we achieve significant improvements in solve time compared to state-of-the-art game solvers. We further provide experimental validation of our proposed method in a navigation setup involving two quadrotors carrying a rigid object while avoiding collisions with two humans.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.