Chengran Luo , Yao Shen , Songhe Zhang , Cheng Han , Hongyi Chen
{"title":"Smoothing Li transport via weak Metal-O bonds for improved ionic mobility in lithium lanthanum titanium oxide","authors":"Chengran Luo , Yao Shen , Songhe Zhang , Cheng Han , Hongyi Chen","doi":"10.1016/j.mtphys.2025.101704","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium lanthanum titanate oxide (LLTO) presents significant potential as a solid electrolyte in all-solid-state Li-ion batteries. However, its ionic conductivity requires enhancement for broader applications. In this study, we conducted first-principles calculations to explore the impact of metal doping on LLTO's ionic mobility. LLTO showed uneven ionic diffusion characterized by singular Li-O bonds at certain intermediate states. Ni doping introduced additional electrons into the <em>b</em><sub>1</sub>∗ orbital of the Ti-O anti-bonding, weakening the Ti-O bond and strengthening the Li-O bond. The enhanced Li-O bond facilitated smoother ionic diffusion, reducing the barrier energy to 3.4 × 10<sup>−4</sup> cm<sup>2</sup>/s for Ni-doped LLTO. Moreover, incorporating various metal dopants in LLTO consistently demonstrated that weaker metal-O bonds contributed to reduced barrier energies. This research underscores the efficacy of diminishing metal-O bonds to significantly boost ionic migration rates in solid-state electrolytes with a perovskite structure.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"53 ","pages":"Article 101704"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000604","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium lanthanum titanate oxide (LLTO) presents significant potential as a solid electrolyte in all-solid-state Li-ion batteries. However, its ionic conductivity requires enhancement for broader applications. In this study, we conducted first-principles calculations to explore the impact of metal doping on LLTO's ionic mobility. LLTO showed uneven ionic diffusion characterized by singular Li-O bonds at certain intermediate states. Ni doping introduced additional electrons into the b1∗ orbital of the Ti-O anti-bonding, weakening the Ti-O bond and strengthening the Li-O bond. The enhanced Li-O bond facilitated smoother ionic diffusion, reducing the barrier energy to 3.4 × 10−4 cm2/s for Ni-doped LLTO. Moreover, incorporating various metal dopants in LLTO consistently demonstrated that weaker metal-O bonds contributed to reduced barrier energies. This research underscores the efficacy of diminishing metal-O bonds to significantly boost ionic migration rates in solid-state electrolytes with a perovskite structure.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.