Prediction of high-temperature superconductors with Tc up to 214.3 K in Mg-Zr-H ternary hydrides

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yujie Wang , Kaige Hu , Min Pan
{"title":"Prediction of high-temperature superconductors with Tc up to 214.3 K in Mg-Zr-H ternary hydrides","authors":"Yujie Wang ,&nbsp;Kaige Hu ,&nbsp;Min Pan","doi":"10.1016/j.mtphys.2025.101695","DOIUrl":null,"url":null,"abstract":"<div><div>Ternary hydrides, with richer chemical compositions and structures compared to binary hydrides due to their high degrees of freedom, are expected to contain more candidates for high-<span><math><msub><mrow><mi>T</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> superconductors with remarkable properties including higher <span><math><msub><mrow><mi>T</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> and lower stabilizing pressures. In this work, the high-pressure structures, electronic properties, and superconductivity of MgZrH<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> (<span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span>-6) ternary system are investigated by combining the prediction method of particle swarm optimization algorithm and first-principles calculations. We find thermodynamically stable structures for MgZrH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, MgZrH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, and MgZrH<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>, respectively, while only metastable structures for <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>4</mn></mrow></math></span>. During the predicted structures, our analysis mainly focuses on <span><math><mrow><mi>P</mi><msub><mrow><mn>6</mn></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo><mi>m</mi><mi>m</mi><mi>c</mi></mrow></math></span>-MgZrH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mrow><mi>R</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-MgZrH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><mrow><mi>P</mi><mi>m</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>-MgZrH<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>, and <span><math><mrow><mi>F</mi><mi>d</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-MgZrH<sub>12</sub>. <span><math><mrow><mi>P</mi><msub><mrow><mn>6</mn></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo><mi>m</mi><mi>m</mi><mi>c</mi></mrow></math></span>-MgZrH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mrow><mi>R</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-MgZrH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> exhibit a low <span><math><msub><mrow><mi>T</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> of 0.006 K at 40 GPa and 0.95 K at ambient pressure, respectively, due to low electronic contribution from hydrogen at the Fermi level. <span><math><mrow><mi>P</mi><mi>m</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>-MgZrH<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> shows a higher <span><math><msub><mrow><mi>T</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> of 80.3 K at 36 GPa, primarily influenced by softened phonon modes and a high Hopfield ratio <span><math><mrow><msup><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>M</mi></mrow></math></span>. Furthermore, the superconducting figure of merit of <span><math><mrow><mi>P</mi><mi>m</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>-MgZrH<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> is <span><math><mrow><mi>S</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>51</mn></mrow></math></span>, significantly larger than that of MgB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Remarkably, <span><math><mrow><mi>F</mi><mi>d</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-MgZrH<sub>12</sub> is a high-<span><math><msub><mrow><mi>T</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> superconductor with a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> up to 214.3 K at 300 GPa, due to its high hydrogen content and significant electronic contribution from hydrogen at the Fermi level. Our study provides valuable insights for future experiments and can serve as a useful reference for exploring potential high-temperature superconductors in ternary hydrides.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"53 ","pages":"Article 101695"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000513","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary hydrides, with richer chemical compositions and structures compared to binary hydrides due to their high degrees of freedom, are expected to contain more candidates for high-Tc superconductors with remarkable properties including higher Tc and lower stabilizing pressures. In this work, the high-pressure structures, electronic properties, and superconductivity of MgZrH2n (n=1-6) ternary system are investigated by combining the prediction method of particle swarm optimization algorithm and first-principles calculations. We find thermodynamically stable structures for MgZrH2, MgZrH4, and MgZrH6, respectively, while only metastable structures for n4. During the predicted structures, our analysis mainly focuses on P63/mmc-MgZrH2, R3̄m-MgZrH4, Pm3̄-MgZrH6, and Fd3̄m-MgZrH12. P63/mmc-MgZrH2 and R3̄m-MgZrH4 exhibit a low Tc of 0.006 K at 40 GPa and 0.95 K at ambient pressure, respectively, due to low electronic contribution from hydrogen at the Fermi level. Pm3̄-MgZrH6 shows a higher Tc of 80.3 K at 36 GPa, primarily influenced by softened phonon modes and a high Hopfield ratio I2/M. Furthermore, the superconducting figure of merit of Pm3̄-MgZrH6 is S=1.51, significantly larger than that of MgB2. Remarkably, Fd3̄m-MgZrH12 is a high-Tc superconductor with a Tc up to 214.3 K at 300 GPa, due to its high hydrogen content and significant electronic contribution from hydrogen at the Fermi level. Our study provides valuable insights for future experiments and can serve as a useful reference for exploring potential high-temperature superconductors in ternary hydrides.
Mg-Zr-H三元氢化物中Tc高达214.3 K的高温超导体的预测
与二元氢化物相比,三元氢化物由于其高度的自由度,具有更丰富的化学成分和结构,有望包含更多的高TcTc超导体候选材料,具有更高的TcTc和更低的稳定压力等卓越性能。本文采用粒子群优化算法和第一性原理计算相结合的预测方法,研究了MgZrH2n2n (n=1n=1-6)三元体系的高压结构、电子性能和超导性。我们分别发现了MgZrH22、MgZrH44和MgZrH66的热力学稳定结构,而对于n或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或或在预测结构中,我们的分析主要集中在P63/mmcP63/mmc-MgZrH22、R3’mR3’m-MgZrH44、Pm3’Pm3’m -MgZrH66和Fd3’mFd3’m-MgZrH12。P63/mmcP63/mmc-MgZrH22和R3 / mR3 / m-MgZrH44在40 GPa和环境压力下分别表现出0.006 K和0.95 K的低TcTc,这是由于氢在费米能级上的低电子贡献。Pm3 / Pm3 -MgZrH66在36 GPa时TcTc高达80.3 K,主要受声子模式软化和Hopfield比值I2/MI2/M的影响。Pm3 - Pm3 -MgZrH66的超导优值为S=1.51S=1.51,显著大于MgB22。值得注意的是,Fd3 / mFd3 / m-MgZrH12是一种高TcTc超导体,在300 GPa时TcTc高达214.3 K,这是由于它的高氢含量和费米能级上氢的显著电子贡献。我们的研究为未来的实验提供了有价值的见解,可以为探索三元氢化物中潜在的高温超导体提供有用的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信