2-Dodecyl-6-Methoxycyclohexa-2,5-Diene-1,4-Dione from Averrhoa carambola L. roots: Suppressing hepatocellular carcinoma progression through ROS accumulation and p53 pathway-mediated apoptosis

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Meifeng Chen , Hongbing Pang , Thi Thai Hoa Pham , Yongfei He , Qiang Gao , Yuan Liao , Chunyi Zhu , Linqian Chen , Guohong Yan , Shutian Mo , Chuangye Han
{"title":"2-Dodecyl-6-Methoxycyclohexa-2,5-Diene-1,4-Dione from Averrhoa carambola L. roots: Suppressing hepatocellular carcinoma progression through ROS accumulation and p53 pathway-mediated apoptosis","authors":"Meifeng Chen ,&nbsp;Hongbing Pang ,&nbsp;Thi Thai Hoa Pham ,&nbsp;Yongfei He ,&nbsp;Qiang Gao ,&nbsp;Yuan Liao ,&nbsp;Chunyi Zhu ,&nbsp;Linqian Chen ,&nbsp;Guohong Yan ,&nbsp;Shutian Mo ,&nbsp;Chuangye Han","doi":"10.1016/j.taap.2025.117296","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the anti-tumor effects of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD), a compound derived from <em>Averrhoa carambola</em> L roots, on hepatocellular carcinoma (HCC) cells and a xenograft mouse model, focusing on its underlying mechanisms. Cell viability following DMDD treatment was assessed using the CCK-8 assay. Flow cytometry determined changes in cell cycle distribution and apoptosis rates, while migration and invasion capabilities were assessed using wound healing and transwell assays, respectively. Transcriptome sequencing (RNA-seq) was conducted to analyze differential gene expression and pathway enrichment. <em>Z</em>-VAD-FMK, a pan-caspase inhibitor, was used to confirm the apoptotic mechanism induced by DMDD. The expression levels of p53, Bax, Bcl-2, and cleaved caspase 3 were quantified via Western blot analysis. A xenograft mouse model was developed to assess the in vivo effects of DMDD on HCC. DMDD suppressed proliferation, migration, and invasion, and induced apoptosis in Huh7 and Hep3b cells. RNA-seq revealed significant enrichment of p53 and apoptosis signaling pathways among differentially expressed genes. DMDD downregulated Bcl-2 expression and upregulated p53, Bax and cleaved caspase 3. In addition, <em>Z</em>-VAD-FMK partially inhibited DMDD-induced apoptosis. DMDD also inhibited tumor growth in mice. DMDD effectively inhibited tumor growth in HCC cell lines and xenograft models, potentially through ROS elevation and p53-mediated activation of the intrinsic apoptotic pathway.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"498 ","pages":"Article 117296"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000729","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the anti-tumor effects of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD), a compound derived from Averrhoa carambola L roots, on hepatocellular carcinoma (HCC) cells and a xenograft mouse model, focusing on its underlying mechanisms. Cell viability following DMDD treatment was assessed using the CCK-8 assay. Flow cytometry determined changes in cell cycle distribution and apoptosis rates, while migration and invasion capabilities were assessed using wound healing and transwell assays, respectively. Transcriptome sequencing (RNA-seq) was conducted to analyze differential gene expression and pathway enrichment. Z-VAD-FMK, a pan-caspase inhibitor, was used to confirm the apoptotic mechanism induced by DMDD. The expression levels of p53, Bax, Bcl-2, and cleaved caspase 3 were quantified via Western blot analysis. A xenograft mouse model was developed to assess the in vivo effects of DMDD on HCC. DMDD suppressed proliferation, migration, and invasion, and induced apoptosis in Huh7 and Hep3b cells. RNA-seq revealed significant enrichment of p53 and apoptosis signaling pathways among differentially expressed genes. DMDD downregulated Bcl-2 expression and upregulated p53, Bax and cleaved caspase 3. In addition, Z-VAD-FMK partially inhibited DMDD-induced apoptosis. DMDD also inhibited tumor growth in mice. DMDD effectively inhibited tumor growth in HCC cell lines and xenograft models, potentially through ROS elevation and p53-mediated activation of the intrinsic apoptotic pathway.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信