Antibiotic-Modified Nanoparticles Combined with Lysozyme for Rapid Extraction of Pathogenic Bacteria DNA in Blood

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Yong Li, Yanwen Qi, Jiaqi Liu, Pengyu Wang, Jiayu Zheng, Xiangyu Chen, Ye Wang, Xiaowen Zhao, Yingqiu Xie, Chao Shi, Cuiping Ma
{"title":"Antibiotic-Modified Nanoparticles Combined with Lysozyme for Rapid Extraction of Pathogenic Bacteria DNA in Blood","authors":"Yong Li, Yanwen Qi, Jiaqi Liu, Pengyu Wang, Jiayu Zheng, Xiangyu Chen, Ye Wang, Xiaowen Zhao, Yingqiu Xie, Chao Shi, Cuiping Ma","doi":"10.1021/acs.analchem.4c07066","DOIUrl":null,"url":null,"abstract":"Rapid and precise identification of the pathogens causing sepsis remains a significant diagnostic challenge. Blood culture is time-consuming and insensitive, while molecular diagnostic techniques, such as the polymerase chain reaction (PCR), are fast but greatly influenced by template quality. Here, we present a new approach to separate trace amounts of pathogen DNA from blood, which utilizes lysozyme to destroy bacteria and release DNA, followed by enrichment and purification using magnetic nanoparticles (MNPs) modified with kanamycin (Kan) or tobramycin (TM). We demonstrate that the prepared Kan@MNPs and TM@MNPs can efficiently adsorb DNA, with the mechanism involving interaction with the minor groove of DNA. Notably, the adoption of lysozyme ensures bacterial lysis while avoiding damage to blood cells, minimizing the interference from human genomic DNA background and inhibitory components, thereby obtaining relatively pure bacterial DNA. For artificially infected whole blood samples, our method shortens the sample processing time to 35 min and achieves a 10-fold improvement in PCR sensitivity compared to a commercial kit. Through clinical evaluation of blood samples collected from suspected infected patients, we identified positive samples that were 100% consistent with the clinical practice. Therefore, this method holds promising potential for clinical application in advancing rapid sepsis diagnosis and earlier interventions.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"183 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c07066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid and precise identification of the pathogens causing sepsis remains a significant diagnostic challenge. Blood culture is time-consuming and insensitive, while molecular diagnostic techniques, such as the polymerase chain reaction (PCR), are fast but greatly influenced by template quality. Here, we present a new approach to separate trace amounts of pathogen DNA from blood, which utilizes lysozyme to destroy bacteria and release DNA, followed by enrichment and purification using magnetic nanoparticles (MNPs) modified with kanamycin (Kan) or tobramycin (TM). We demonstrate that the prepared Kan@MNPs and TM@MNPs can efficiently adsorb DNA, with the mechanism involving interaction with the minor groove of DNA. Notably, the adoption of lysozyme ensures bacterial lysis while avoiding damage to blood cells, minimizing the interference from human genomic DNA background and inhibitory components, thereby obtaining relatively pure bacterial DNA. For artificially infected whole blood samples, our method shortens the sample processing time to 35 min and achieves a 10-fold improvement in PCR sensitivity compared to a commercial kit. Through clinical evaluation of blood samples collected from suspected infected patients, we identified positive samples that were 100% consistent with the clinical practice. Therefore, this method holds promising potential for clinical application in advancing rapid sepsis diagnosis and earlier interventions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信