Mining Highly Active Oleate Hydratases by Structure Clustering, Sequence Clustering, and Ancestral Sequence Reconstruction

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Xinyu Che, Xiangyu Tao, Jianan Chen, Yanbin Feng, Ziheng Cui, Ting Feng, Yunming Fang, Han Wen, Song Xue
{"title":"Mining Highly Active Oleate Hydratases by Structure Clustering, Sequence Clustering, and Ancestral Sequence Reconstruction","authors":"Xinyu Che, Xiangyu Tao, Jianan Chen, Yanbin Feng, Ziheng Cui, Ting Feng, Yunming Fang, Han Wen, Song Xue","doi":"10.1021/acs.jafc.4c10815","DOIUrl":null,"url":null,"abstract":"Oleate hydratases (Ohys) catalyze the conversion of oleic acid (OA) to 10-(<i>R</i>)-hydroxystearic acid (10-HSA), a compound widely used in the chemical industry. However, the limited activity of Ohys has hindered their broader applications. To address this limitation, we propose a novel strategy for mining highly active Ohys through structure clustering, sequence clustering, and ancestral sequence reconstruction (SSA strategy). Structure clustering via AI-driven protein structure prediction followed by classification enhanced the ability to mine target Ohys. Ancestral enzyme reconstruction was carried out based on mining results from both structure and sequence clustering. This strategy significantly reduces the time and cost of the discovery process. Among the 1304 Ohys screened via SSA, 13 candidates were selected. Seven candidates demonstrated high activity. Ohy 64, identified through structure clustering, exhibited the highest activity. Ancestral enzymes that were reconstructed from structure clustering targets were 3 times more likely to exhibit high catalytic activity than those identified through sequence clustering. Four critical, hydrophobic residues were identified through structure and sequence comparisons between StOhy and targets mined by SSA. Site-directed mutagenesis revealed that these hydrophobic residues conferred varying levels of enzyme activity, confirming that increased hydrophobicity at these positions enhances cofactor FAD binding, thus improving enzyme catalytic efficiency.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"16 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c10815","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oleate hydratases (Ohys) catalyze the conversion of oleic acid (OA) to 10-(R)-hydroxystearic acid (10-HSA), a compound widely used in the chemical industry. However, the limited activity of Ohys has hindered their broader applications. To address this limitation, we propose a novel strategy for mining highly active Ohys through structure clustering, sequence clustering, and ancestral sequence reconstruction (SSA strategy). Structure clustering via AI-driven protein structure prediction followed by classification enhanced the ability to mine target Ohys. Ancestral enzyme reconstruction was carried out based on mining results from both structure and sequence clustering. This strategy significantly reduces the time and cost of the discovery process. Among the 1304 Ohys screened via SSA, 13 candidates were selected. Seven candidates demonstrated high activity. Ohy 64, identified through structure clustering, exhibited the highest activity. Ancestral enzymes that were reconstructed from structure clustering targets were 3 times more likely to exhibit high catalytic activity than those identified through sequence clustering. Four critical, hydrophobic residues were identified through structure and sequence comparisons between StOhy and targets mined by SSA. Site-directed mutagenesis revealed that these hydrophobic residues conferred varying levels of enzyme activity, confirming that increased hydrophobicity at these positions enhances cofactor FAD binding, thus improving enzyme catalytic efficiency.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信