Direction-selective neurons in macaque V4.

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Journal of neurophysiology Pub Date : 2025-05-01 Epub Date: 2025-03-13 DOI:10.1152/jn.00405.2024
Pengcheng Li, Heng Ma, Haidong D Lu
{"title":"Direction-selective neurons in macaque V4.","authors":"Pengcheng Li, Heng Ma, Haidong D Lu","doi":"10.1152/jn.00405.2024","DOIUrl":null,"url":null,"abstract":"<p><p>In mammalian visual system, direction-selective (DS) neurons prefer visual motion in a particular direction and are specialized for visual motion processing. In area V4 of the macaque, about 13% neurons are direction-selective and form clusters (DS domains). The functional role of DS neurons in this form-processing area is still unknown. We implanted electrode arrays targeting these DS domains and recorded neurons' responses to moving stimuli such as gratings and simple shapes. We found that DS neurons were similar to non-DS neurons in their receptive field sizes and orientation-selectivity properties. However, population-wise, DS neurons responded slower and had lower firing rates than non-DS neurons, contrary to their traditional role in motion processing. In addition, direction selectivity of V4 neurons was stimulus-dependent (i.e., not invariant). DS neurons identified with grating stimuli may not exhibit direction selectivity to other types of stimuli such as random dots or contour shapes. These results suggest that, unlike DS neurons in other areas, V4 DS neurons may have a unique origin for their direction selectivity and nontraditional roles in visual motion processing.<b>NEW & NOTEWORTHY</b> The functional role of direction-selective (DS) neurons in the ventral pathway is unclear. We studied DS neurons in area V4 of awake macaques. Interestingly, these neurons have slower responses and lower firing rates than those non-DS neurons. In addition, direction selectivity of these neurons was stimulus-type dependent. DS neurons in V4 may play a functional role different from those typical DS neurons in V1 or MT.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":"1572-1582"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00405.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In mammalian visual system, direction-selective (DS) neurons prefer visual motion in a particular direction and are specialized for visual motion processing. In area V4 of the macaque, about 13% neurons are direction-selective and form clusters (DS domains). The functional role of DS neurons in this form-processing area is still unknown. We implanted electrode arrays targeting these DS domains and recorded neurons' responses to moving stimuli such as gratings and simple shapes. We found that DS neurons were similar to non-DS neurons in their receptive field sizes and orientation-selectivity properties. However, population-wise, DS neurons responded slower and had lower firing rates than non-DS neurons, contrary to their traditional role in motion processing. In addition, direction selectivity of V4 neurons was stimulus-dependent (i.e., not invariant). DS neurons identified with grating stimuli may not exhibit direction selectivity to other types of stimuli such as random dots or contour shapes. These results suggest that, unlike DS neurons in other areas, V4 DS neurons may have a unique origin for their direction selectivity and nontraditional roles in visual motion processing.NEW & NOTEWORTHY The functional role of direction-selective (DS) neurons in the ventral pathway is unclear. We studied DS neurons in area V4 of awake macaques. Interestingly, these neurons have slower responses and lower firing rates than those non-DS neurons. In addition, direction selectivity of these neurons was stimulus-type dependent. DS neurons in V4 may play a functional role different from those typical DS neurons in V1 or MT.

猕猴V4的方向选择神经元。
在哺乳动物的视觉系统中,定向选择神经元偏爱特定方向的视觉运动,并专门从事视觉运动处理。猕猴V4区约有13%的神经元具有方向选择性并形成簇(DS域)。DS神经元在这一形状处理区域的功能作用尚不清楚。我们植入了针对这些DS域的电极阵列,并记录了神经元对移动刺激(如光栅和简单形状)的反应。我们发现,DS神经元在接受野大小和定向选择性方面与非DS神经元相似。然而,总体而言,与非DS神经元相比,DS神经元的反应更慢,放电率更低,这与它们在运动处理中的传统作用相反。此外,V4神经元的方向选择性是刺激依赖的(即不是不变的)。用光栅刺激识别的DS神经元可能对其他类型的刺激(如随机点或轮廓形状)不表现出方向选择性。这些结果表明,与其他区域的DS神经元不同,V4 DS神经元的方向选择性可能具有独特的起源,并且在视觉运动处理中具有非传统的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信