{"title":"A Deep Learning Approach for Throughput Enhanced Clustering and Spectrally Efficient Resource Allocation in Ultra-Dense Networks","authors":"Saksham Katwal;Nidhi Sharma;Krishan Kumar","doi":"10.1109/TNSM.2024.3470235","DOIUrl":null,"url":null,"abstract":"The primary obstacle for the wireless industry is meeting the growing demand for cellular services, which necessitates the deployment of numerous femto base stations (FBSs) in ultra-dense networks. Effective resource distribution among densely and randomly distributed FBSs in ultra-dense is difficult, mainly because of intensified interference problems. The K-means clustering is improved by employing the Davies Bouldin index, which separates the clusters to prevent overlapping and mitigate interference. The elbow approach is utilized to determine the optimal number of clusters. Afterward, attention is directed toward addressing efficient resource allocation through a distributive methodology. The proposed approach makes use of a replay buffer-based multi-agent framework and uses the generative adversarial networks deep distributional Q-network (GAN-DDQN) to efficiently model and learn state-action value distributions for intelligent resource allocation. To further improve control over the training error, the distributions are estimated by approximating a whole quantile function. The numerical results validate the effectiveness of both the proposed clustering method and the GAN-DDQN-based resource allocation scheme in optimizing throughput, fairness, energy efficiency, and spectrum efficiency, all while maintaining the QoS for all users.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 1","pages":"582-591"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10699406/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The primary obstacle for the wireless industry is meeting the growing demand for cellular services, which necessitates the deployment of numerous femto base stations (FBSs) in ultra-dense networks. Effective resource distribution among densely and randomly distributed FBSs in ultra-dense is difficult, mainly because of intensified interference problems. The K-means clustering is improved by employing the Davies Bouldin index, which separates the clusters to prevent overlapping and mitigate interference. The elbow approach is utilized to determine the optimal number of clusters. Afterward, attention is directed toward addressing efficient resource allocation through a distributive methodology. The proposed approach makes use of a replay buffer-based multi-agent framework and uses the generative adversarial networks deep distributional Q-network (GAN-DDQN) to efficiently model and learn state-action value distributions for intelligent resource allocation. To further improve control over the training error, the distributions are estimated by approximating a whole quantile function. The numerical results validate the effectiveness of both the proposed clustering method and the GAN-DDQN-based resource allocation scheme in optimizing throughput, fairness, energy efficiency, and spectrum efficiency, all while maintaining the QoS for all users.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.