Influence of Temperature, Strain Rate, and Vacancies on the Mechanical Properties of Aluminum-Doped Bilayer Silicene

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Alexandre Melhorance Barboza;Luis César Rodríguez Aliaga;Daiara Fernandes de Faria;Ivan Napoleão Bastos
{"title":"Influence of Temperature, Strain Rate, and Vacancies on the Mechanical Properties of Aluminum-Doped Bilayer Silicene","authors":"Alexandre Melhorance Barboza;Luis César Rodríguez Aliaga;Daiara Fernandes de Faria;Ivan Napoleão Bastos","doi":"10.1109/TNANO.2025.3546749","DOIUrl":null,"url":null,"abstract":"Silicene, a two-dimensional material with promising potential for future technological applications, has attracted considerable attention over the past decade. Recent research has focused on modifying silicene's electronic and magnetic properties by means of adsorption or substitutional doping. While the magnetic, electronic, and optical properties of doped silicene have been extensively studied, there is a noticeable gap in the literature regarding its mechanical properties. To address this issue, this study explores the mechanical characteristics of bilayer silicene doped with aluminum under various conditions. By employing molecular dynamics simulations, we investigate the influence of aluminum concentration, defects, temperature, and strain rate on the material's mechanical response. The findings reveal a monotonically decreasing strength with Al concentration in both the zigzag and armchair straining directions. Additionally, the material exhibits high sensitivity to defects, with even a small percentage significantly impairing its mechanical properties. Directional dependence is also observed, with the zigzag direction showing greater sensitivity than the armchair. As strain progresses, initial mono-vacancies evolve into more complex defects, hindering predictions of the mechanical response in certain cases. Lastly, strain rate sensitivity is evaluated, yielding values of 0.0485 and 0.0365 for the zigzag and armchair directions, respectively.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"134-139"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10908092/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Silicene, a two-dimensional material with promising potential for future technological applications, has attracted considerable attention over the past decade. Recent research has focused on modifying silicene's electronic and magnetic properties by means of adsorption or substitutional doping. While the magnetic, electronic, and optical properties of doped silicene have been extensively studied, there is a noticeable gap in the literature regarding its mechanical properties. To address this issue, this study explores the mechanical characteristics of bilayer silicene doped with aluminum under various conditions. By employing molecular dynamics simulations, we investigate the influence of aluminum concentration, defects, temperature, and strain rate on the material's mechanical response. The findings reveal a monotonically decreasing strength with Al concentration in both the zigzag and armchair straining directions. Additionally, the material exhibits high sensitivity to defects, with even a small percentage significantly impairing its mechanical properties. Directional dependence is also observed, with the zigzag direction showing greater sensitivity than the armchair. As strain progresses, initial mono-vacancies evolve into more complex defects, hindering predictions of the mechanical response in certain cases. Lastly, strain rate sensitivity is evaluated, yielding values of 0.0485 and 0.0365 for the zigzag and armchair directions, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信