UAV-Assisted MEC Architecture for Collaborative Task Offloading in Urban IoT Environment

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Subhrajit Barick;Chetna Singhal
{"title":"UAV-Assisted MEC Architecture for Collaborative Task Offloading in Urban IoT Environment","authors":"Subhrajit Barick;Chetna Singhal","doi":"10.1109/TNSM.2025.3535094","DOIUrl":null,"url":null,"abstract":"Mobile edge computing (MEC) is a promising technology to meet the increasing demands and computing limitations of complex Internet of Things (IoT) devices. However, implementing MEC in urban environments can be challenging due to factors like high device density, complex infrastructure, and limited network coverage. Network congestion and connectivity issues can adversely affect user satisfaction. Hence, in this article, we use uncrewed aerial vehicle (UAV)-assisted collaborative MEC architecture to facilitate task offloading of IoT devices in urban environments. We utilize the combined capabilities of UAVs and ground edge servers (ESs) to maximize user satisfaction and thereby also maximize the service provider’s (SP) profit. We design IoT task-offloading as joint IoT-UAV-ES association and UAV-network topology optimization problem. Due to NP-hard nature, we break the problem into two subproblems: offload strategy optimization and UAV topology optimization. We develop a Three-sided Matching with Size and Cyclic preference (TMSC) based task offloading algorithm to find stable association between IoTs, UAVs, and ESs to achieve system objective. We also propose a K-means based iterative algorithm to decide the minimum number of UAVs and their positions to provide offloading services to maximum IoTs in the system. Finally, we demonstrate the efficacy of the proposed task offloading scheme over benchmark schemes through simulation-based evaluation. The proposed scheme outperforms by 19%, 12%, and 25% on average in terms of percentage of served IoTs, average user satisfaction, and SP profit, respectively, with 25% lesser UAVs, making it an effective solution to support IoT task requirements in urban environments using UAV-assisted MEC architecture.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 1","pages":"732-743"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855598/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile edge computing (MEC) is a promising technology to meet the increasing demands and computing limitations of complex Internet of Things (IoT) devices. However, implementing MEC in urban environments can be challenging due to factors like high device density, complex infrastructure, and limited network coverage. Network congestion and connectivity issues can adversely affect user satisfaction. Hence, in this article, we use uncrewed aerial vehicle (UAV)-assisted collaborative MEC architecture to facilitate task offloading of IoT devices in urban environments. We utilize the combined capabilities of UAVs and ground edge servers (ESs) to maximize user satisfaction and thereby also maximize the service provider’s (SP) profit. We design IoT task-offloading as joint IoT-UAV-ES association and UAV-network topology optimization problem. Due to NP-hard nature, we break the problem into two subproblems: offload strategy optimization and UAV topology optimization. We develop a Three-sided Matching with Size and Cyclic preference (TMSC) based task offloading algorithm to find stable association between IoTs, UAVs, and ESs to achieve system objective. We also propose a K-means based iterative algorithm to decide the minimum number of UAVs and their positions to provide offloading services to maximum IoTs in the system. Finally, we demonstrate the efficacy of the proposed task offloading scheme over benchmark schemes through simulation-based evaluation. The proposed scheme outperforms by 19%, 12%, and 25% on average in terms of percentage of served IoTs, average user satisfaction, and SP profit, respectively, with 25% lesser UAVs, making it an effective solution to support IoT task requirements in urban environments using UAV-assisted MEC architecture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信