GFSNet: Gaussian Fourier with sparse attention network for visual question answering

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiang Shen, Dezhi Han, Chin-Chen Chang, Ammar Oad, Huafeng Wu
{"title":"GFSNet: Gaussian Fourier with sparse attention network for visual question answering","authors":"Xiang Shen,&nbsp;Dezhi Han,&nbsp;Chin-Chen Chang,&nbsp;Ammar Oad,&nbsp;Huafeng Wu","doi":"10.1007/s10462-025-11163-4","DOIUrl":null,"url":null,"abstract":"<div><p>Visual question answering (VQA), a core task in multimodal learning, requires models to effectively integrate visual and natural language information to perform reasoning and semantic understanding in complex scenarios. However, self-attention mechanisms often struggle to capture multi-scale information and key region features within images comprehensively. Moreover, VQA involves multidimensional and deep reasoning about image content, particularly in scenarios involving spatial relationships and frequency-domain features. Existing methods face limitations in modeling multi-scale features and filtering irrelevant information effectively. This paper proposes an innovative Gaussian Fourier with Sparse Attention Network (GFSNet) to address these challenges. GFSNet leverages Fourier transforms to map image attention weights generated by the self-attention mechanism from the spatial domain to the frequency domain, enabling comprehensive modeling of multi-scale frequency information. This enhances the model’s adaptability to complex structures and its capacity for relational modeling. To further improve feature robustness, a Gaussian filter is introduced to suppress high-frequency noise in the frequency domain, preserving critical visual information. Additionally, a sparse attention mechanism dynamically selects optimized frequency-domain features, effectively reducing interference from redundant information while improving interpretability and computational efficiency. Without increasing parameter counts or computational complexity, GFSNet achieves efficient modeling of multi-scale visual information. Experimental results on benchmark VQA datasets (VQA v2, GQA, and CLEVR) demonstrate that GFSNet significantly enhances reasoning capabilities and cross-modal alignment performance, validating its superiority and effectiveness. The code is available at https://github.com/shenxiang-vqa/GFSNet.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11163-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11163-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Visual question answering (VQA), a core task in multimodal learning, requires models to effectively integrate visual and natural language information to perform reasoning and semantic understanding in complex scenarios. However, self-attention mechanisms often struggle to capture multi-scale information and key region features within images comprehensively. Moreover, VQA involves multidimensional and deep reasoning about image content, particularly in scenarios involving spatial relationships and frequency-domain features. Existing methods face limitations in modeling multi-scale features and filtering irrelevant information effectively. This paper proposes an innovative Gaussian Fourier with Sparse Attention Network (GFSNet) to address these challenges. GFSNet leverages Fourier transforms to map image attention weights generated by the self-attention mechanism from the spatial domain to the frequency domain, enabling comprehensive modeling of multi-scale frequency information. This enhances the model’s adaptability to complex structures and its capacity for relational modeling. To further improve feature robustness, a Gaussian filter is introduced to suppress high-frequency noise in the frequency domain, preserving critical visual information. Additionally, a sparse attention mechanism dynamically selects optimized frequency-domain features, effectively reducing interference from redundant information while improving interpretability and computational efficiency. Without increasing parameter counts or computational complexity, GFSNet achieves efficient modeling of multi-scale visual information. Experimental results on benchmark VQA datasets (VQA v2, GQA, and CLEVR) demonstrate that GFSNet significantly enhances reasoning capabilities and cross-modal alignment performance, validating its superiority and effectiveness. The code is available at https://github.com/shenxiang-vqa/GFSNet.

GFSNet:用于视觉问题解答的高斯傅里叶稀疏注意力网络
视觉问答(Visual question answer, VQA)是多模态学习中的一项核心任务,它要求模型有效地整合视觉和自然语言信息,在复杂场景中进行推理和语义理解。然而,自注意机制往往难以全面捕获图像中的多尺度信息和关键区域特征。此外,VQA涉及对图像内容的多维和深度推理,特别是在涉及空间关系和频域特征的场景中。现有方法在多尺度特征建模和有效过滤无关信息方面存在局限性。本文提出了一种创新的高斯傅里叶稀疏注意力网络(GFSNet)来解决这些挑战。GFSNet利用傅里叶变换将自注意机制产生的图像注意权值从空间域映射到频域,实现多尺度频率信息的综合建模。这增强了模型对复杂结构的适应性和关系建模的能力。为了进一步提高特征的鲁棒性,引入高斯滤波器来抑制频域高频噪声,保留关键的视觉信息。此外,稀疏注意机制动态选择优化的频域特征,有效减少冗余信息的干扰,提高可解释性和计算效率。在不增加参数数量和计算复杂度的前提下,GFSNet实现了多尺度视觉信息的高效建模。在VQA基准数据集(VQA v2、GQA和CLEVR)上的实验结果表明,GFSNet显著提高了推理能力和跨模态对齐性能,验证了其优越性和有效性。代码可在https://github.com/shenxiang-vqa/GFSNet上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信