Thermal Stability of Gate Driver Circuits Based on 4H-SiC MOSFETs at 300°C for High-Power Applications

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Vuong Van Cuong;Tatsuya Meguro;Seiji Ishikawa;Tomonori Maeda;Hiroshi Sezaki;Shin-Ichiro Kuroki
{"title":"Thermal Stability of Gate Driver Circuits Based on 4H-SiC MOSFETs at 300°C for High-Power Applications","authors":"Vuong Van Cuong;Tatsuya Meguro;Seiji Ishikawa;Tomonori Maeda;Hiroshi Sezaki;Shin-Ichiro Kuroki","doi":"10.1109/JEDS.2025.3546959","DOIUrl":null,"url":null,"abstract":"The operation and reliability of gate driver circuits based on 4H-SiC MOSFETs at temperatures up to 300°C were reported. Due to the advantages of 4H-SiC MOSFETs, the driver circuit can overcome limitations in complicated circuit design and power dissipation associated with SiC BJTbased technology. Additionally, the stability of implanted 4H-SiC resistors can address the reliability issues of SiC CMOS-based driver circuits, which are caused by the instability in the threshold voltage of P-channel SiC MOSFETs. In this study, the switching characteristics of the gate driver circuit were improved when the ambient temperature increased. The decrease of threshold voltage and increase of carrier mobility of the 4H-SiC MOSFETs may account for the improvement in switching characteristics of the gate driver circuit. The output signal of the gate driver circuit still showed proper characteristics after 600 min of continuous operation at 300°C in an air ambient. These results indicate that the gate driver circuit based on 4H-SiC MOSFET technology is promising to apply for high power applications.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"161-167"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908627","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10908627/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The operation and reliability of gate driver circuits based on 4H-SiC MOSFETs at temperatures up to 300°C were reported. Due to the advantages of 4H-SiC MOSFETs, the driver circuit can overcome limitations in complicated circuit design and power dissipation associated with SiC BJTbased technology. Additionally, the stability of implanted 4H-SiC resistors can address the reliability issues of SiC CMOS-based driver circuits, which are caused by the instability in the threshold voltage of P-channel SiC MOSFETs. In this study, the switching characteristics of the gate driver circuit were improved when the ambient temperature increased. The decrease of threshold voltage and increase of carrier mobility of the 4H-SiC MOSFETs may account for the improvement in switching characteristics of the gate driver circuit. The output signal of the gate driver circuit still showed proper characteristics after 600 min of continuous operation at 300°C in an air ambient. These results indicate that the gate driver circuit based on 4H-SiC MOSFET technology is promising to apply for high power applications.
基于4H-SiC mosfet的栅极驱动电路在300°C下的热稳定性
报道了基于4H-SiC mosfet的栅极驱动电路在高达300°C温度下的工作和可靠性。由于4H-SiC mosfet的优点,驱动电路可以克服基于SiC bjt技术的复杂电路设计和功耗限制。此外,植入4H-SiC电阻的稳定性可以解决由p沟道SiC mosfet阈值电压不稳定引起的SiC cmos驱动电路可靠性问题。在本研究中,栅极驱动电路的开关特性随着环境温度的升高而得到改善。阈值电压的降低和载流子迁移率的提高可能是栅极驱动电路开关特性改善的原因。在300℃的空气环境中连续工作600分钟后,栅极驱动电路的输出信号仍然显示出正常的特性。这些结果表明,基于4H-SiC MOSFET技术的栅极驱动电路有望应用于高功率应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信