Spatial distribution and influencing factors of data centers in China: An empirical analysis based on the geodetector model

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Lei Wang , Donglin Chen , Mengdi Yao , Guolong She
{"title":"Spatial distribution and influencing factors of data centers in China: An empirical analysis based on the geodetector model","authors":"Lei Wang ,&nbsp;Donglin Chen ,&nbsp;Mengdi Yao ,&nbsp;Guolong She","doi":"10.1016/j.enbuild.2025.115588","DOIUrl":null,"url":null,"abstract":"<div><div>Data centers are vital infrastructure for the digital economy’s growth. Analyzing the spatial distribution of data centers and the factors influencing this distribution can guide their sustainable and regionally balanced development. Using data from Chinese data centers between 2016 and 2022, this study employs the nearest neighbor index, geographic concentration index, imbalance index, kernel density estimation, and Anselin Local Moran’s I to quantitatively analyze the spatial distribution characteristics of data centers. Additionally, Geodetector and Pearson correlation analysis are used to identify factors that significantly correlate with the spatial distribution of data centers. The results indicate that: (1) Data centers exhibit clear agglomeration characteristics, forming a “dense east and sparse west” distribution pattern, with three cores in the Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta. (2) Provincially, the spatial distribution of data centers shows a significant imbalance, with “high-low” clustering observed in Guangzhou and “high-high” clustering in Shanghai. (3) Multiple factors influence the spatial distribution, with computing demand and economic development showing the strongest correlations. Furthermore, data center distribution is shifting from solely pursuing economic benefits to taking into account both economic and environmental benefits. (4) Regional variations exist in influencing factors. In the eastern region, computing demand and economic development levels show the strongest correlations, while in the central and western regions, government financial support is more significantly correlated. Based on the analysis results, this study proposes specific recommendations for the development and distribution of data centers across various regions of China from the perspectives of policymakers and data center operators.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"336 ","pages":"Article 115588"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003184","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Data centers are vital infrastructure for the digital economy’s growth. Analyzing the spatial distribution of data centers and the factors influencing this distribution can guide their sustainable and regionally balanced development. Using data from Chinese data centers between 2016 and 2022, this study employs the nearest neighbor index, geographic concentration index, imbalance index, kernel density estimation, and Anselin Local Moran’s I to quantitatively analyze the spatial distribution characteristics of data centers. Additionally, Geodetector and Pearson correlation analysis are used to identify factors that significantly correlate with the spatial distribution of data centers. The results indicate that: (1) Data centers exhibit clear agglomeration characteristics, forming a “dense east and sparse west” distribution pattern, with three cores in the Beijing-Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River Delta. (2) Provincially, the spatial distribution of data centers shows a significant imbalance, with “high-low” clustering observed in Guangzhou and “high-high” clustering in Shanghai. (3) Multiple factors influence the spatial distribution, with computing demand and economic development showing the strongest correlations. Furthermore, data center distribution is shifting from solely pursuing economic benefits to taking into account both economic and environmental benefits. (4) Regional variations exist in influencing factors. In the eastern region, computing demand and economic development levels show the strongest correlations, while in the central and western regions, government financial support is more significantly correlated. Based on the analysis results, this study proposes specific recommendations for the development and distribution of data centers across various regions of China from the perspectives of policymakers and data center operators.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信