Physiochemical and functional properties of gelatin obtained from frigate mackerel (Auxis thazard), skipjack tuna (Katsuwonus pelamis), Longtail tuna (Thunnus tonggol) and yellowfin tuna (Thunnus albacares) skin

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Qinghe Yin , Haohao Shi , Yongqiang Zhao , Gang Yu , Haohao Wu , Guanghua Xia , Tao Yang
{"title":"Physiochemical and functional properties of gelatin obtained from frigate mackerel (Auxis thazard), skipjack tuna (Katsuwonus pelamis), Longtail tuna (Thunnus tonggol) and yellowfin tuna (Thunnus albacares) skin","authors":"Qinghe Yin ,&nbsp;Haohao Shi ,&nbsp;Yongqiang Zhao ,&nbsp;Gang Yu ,&nbsp;Haohao Wu ,&nbsp;Guanghua Xia ,&nbsp;Tao Yang","doi":"10.1016/j.fochx.2025.102360","DOIUrl":null,"url":null,"abstract":"<div><div>This study conducted a systematic investigation into the physicochemical and functional properties of gelatin extracted through alkaline methods from the skins of four commercially significant tuna species: frigate mackerel (<em>Auxis thazard</em>), skipjack tuna (<em>Katsuwonus pelamis</em>), longtail tuna (<em>Thunnus tonggol</em>), and yellowfin tuna (<em>Thunnus albacares</em>). Comparative analyses revealed notable species-specific variations in gelatin yield, amino acid composition, molecular weight distribution, and functional performance. Notably, yellowfin tuna skin gelatin (YSG) exhibited the highest melting point (28.09 °C), gel strength (271 g), and proline content (14.3 %), along with superior foaming capacity (20.43 %), water retention, and emulsification stability. Molecular weight profiles obtained via SDS-PAGE confirmed the presence of α- and β-chains characteristic of type I collagen, with YSG demonstrating enhanced structural integrity and thermal stability attributed to its elevated proline content. Additionally, Fourier-transform infrared spectroscopy (FTIR) and circular dichroism (CD) analyses indicated stronger hydrogen bonding and preservation of the triple-helix structure in YSG. While longtail tuna yielded the highest extraction rate (21.5 %), skipjack tuna showed the highest protein content (86.7 %). In contrast, frigate mackerel gelatin displayed darker coloration (ΔE* = 53.09) due to residual pigments. Rheological assessments highlighted YSG's optimal viscoelasticity and melting behavior, aligning with its robust interfacial properties. These findings underscore the potential of yellowfin tuna skin gelatin as a viable alternative to mammalian gelatin in food and biomedical applications, offering enhanced functional performance while valorizing underutilized fishery by-products.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"27 ","pages":"Article 102360"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015752500207X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducted a systematic investigation into the physicochemical and functional properties of gelatin extracted through alkaline methods from the skins of four commercially significant tuna species: frigate mackerel (Auxis thazard), skipjack tuna (Katsuwonus pelamis), longtail tuna (Thunnus tonggol), and yellowfin tuna (Thunnus albacares). Comparative analyses revealed notable species-specific variations in gelatin yield, amino acid composition, molecular weight distribution, and functional performance. Notably, yellowfin tuna skin gelatin (YSG) exhibited the highest melting point (28.09 °C), gel strength (271 g), and proline content (14.3 %), along with superior foaming capacity (20.43 %), water retention, and emulsification stability. Molecular weight profiles obtained via SDS-PAGE confirmed the presence of α- and β-chains characteristic of type I collagen, with YSG demonstrating enhanced structural integrity and thermal stability attributed to its elevated proline content. Additionally, Fourier-transform infrared spectroscopy (FTIR) and circular dichroism (CD) analyses indicated stronger hydrogen bonding and preservation of the triple-helix structure in YSG. While longtail tuna yielded the highest extraction rate (21.5 %), skipjack tuna showed the highest protein content (86.7 %). In contrast, frigate mackerel gelatin displayed darker coloration (ΔE* = 53.09) due to residual pigments. Rheological assessments highlighted YSG's optimal viscoelasticity and melting behavior, aligning with its robust interfacial properties. These findings underscore the potential of yellowfin tuna skin gelatin as a viable alternative to mammalian gelatin in food and biomedical applications, offering enhanced functional performance while valorizing underutilized fishery by-products.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信