Gaotao Zhang , Zhiqin Liu , Yuanzhuang Xu , Fei Cao , Xiaowei Huo , Queting Chen , Duqiang Luo
{"title":"Exploring the mechanism of baicalein on breast cancer based on network pharmacology, molecular docking and in vivo experiments","authors":"Gaotao Zhang , Zhiqin Liu , Yuanzhuang Xu , Fei Cao , Xiaowei Huo , Queting Chen , Duqiang Luo","doi":"10.1016/j.taap.2025.117297","DOIUrl":null,"url":null,"abstract":"<div><div>Abstract</div><div>Breast cancer ranks among the most deadly gynecological cancers and presents a significant risk to women's health. Baicalein, a flavonoid extracted from <em>Radix Scutellariae</em>, has garnered significant interest due to its potential anti-cancer properties. However, further research is required to determine the precise anti-cancer mechanisms of baicalein. Hence, we investigated the anti-tumor properties and underlying mechanisms of baicalein in breast cancer, utilizing both network pharmacology and experimental approaches. The effects of baicalein on cellular proliferation, the cell cycle, and apoptosis were assessed through MTT assays, plate cloning, and flow cytometry techniques. Furthermore, network pharmacology was employed to identify the primary target and pathway associated with baicalein in the context of breast cancer. The validation of these target and the elucidation of baicalein anti-breast cancer mechanisms were carried out using Western blotting, qRT-PCR, molecular docking, CETSA assays, and IHC. Behavioral experiments were conducted to assess the physical changes and toxicity of baicalein in model mice. Our findings demonstrated that baicalein significantly reduced the growth of both MCF-7 and MDA-MB-231 cell lines in a dose-dependent manner, inhibited cell proliferation, induced G0/G1 phase arrest, and triggered apoptosis. Notably, SRC serves as a therapeutic target for baicalein, with the Hippo pathway identified as a crucial mechanism of action in this context. Intraperitoneal injection of baicalein has been demonstrated to effectively inhibit tumor growth, while concurrently ameliorating splenomegaly and enhancing the fatigue resistance of the model mice. The findings confirm that baicalein was a potential drug for the treatment of breast cancer.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"498 ","pages":"Article 117297"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000730","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer ranks among the most deadly gynecological cancers and presents a significant risk to women's health. Baicalein, a flavonoid extracted from Radix Scutellariae, has garnered significant interest due to its potential anti-cancer properties. However, further research is required to determine the precise anti-cancer mechanisms of baicalein. Hence, we investigated the anti-tumor properties and underlying mechanisms of baicalein in breast cancer, utilizing both network pharmacology and experimental approaches. The effects of baicalein on cellular proliferation, the cell cycle, and apoptosis were assessed through MTT assays, plate cloning, and flow cytometry techniques. Furthermore, network pharmacology was employed to identify the primary target and pathway associated with baicalein in the context of breast cancer. The validation of these target and the elucidation of baicalein anti-breast cancer mechanisms were carried out using Western blotting, qRT-PCR, molecular docking, CETSA assays, and IHC. Behavioral experiments were conducted to assess the physical changes and toxicity of baicalein in model mice. Our findings demonstrated that baicalein significantly reduced the growth of both MCF-7 and MDA-MB-231 cell lines in a dose-dependent manner, inhibited cell proliferation, induced G0/G1 phase arrest, and triggered apoptosis. Notably, SRC serves as a therapeutic target for baicalein, with the Hippo pathway identified as a crucial mechanism of action in this context. Intraperitoneal injection of baicalein has been demonstrated to effectively inhibit tumor growth, while concurrently ameliorating splenomegaly and enhancing the fatigue resistance of the model mice. The findings confirm that baicalein was a potential drug for the treatment of breast cancer.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.