Bing Tang;Zhikang Wu;Wei Xu;Buqing Cao;Mingdong Tang;Qing Yang
{"title":"TP-MDU: A Two-Phase Microservice Deployment Based on Minimal Deployment Unit in Edge Computing Environment","authors":"Bing Tang;Zhikang Wu;Wei Xu;Buqing Cao;Mingdong Tang;Qing Yang","doi":"10.1109/TNSM.2024.3483634","DOIUrl":null,"url":null,"abstract":"In mobile edge computing (MEC) environment, effective microservices deployment significantly reduces vendor costs and minimizes application latency. However, existing literatures overlook the impact of dynamic characteristics such as the frequency of user requests and geographical location, and lack in-depth consideration of the types of microservices and their interaction frequencies. To address these issues, we propose TP-MDU, a novel two-stage deployment framework for microservices. This framework is designed to learn users’ dynamic behaviors and introduces, for the first time, a minimal deployment unit. Initially, TP-MDU generates minimal deployment units online, tailored to the types of microservices and their interaction frequencies. In the initial deployment phase, aiming for load balancing, it employs a simulated annealing algorithm to achieve a superior deployment plan. During the optimization scheduling phase, it utilizes reinforcement learning algorithms and introduces dynamic information and new optimization objectives. Previous deployment plans serve as the initial state for policy learning, thus facilitating more optimal deployment decisions. This paper evaluates the performance of TP-MDU using a real dataset from Australia’s EUA and some related synthetic data. The experimental results indicate that TP-MDU outperforms other representative algorithms in performance.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 1","pages":"718-731"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10722867/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In mobile edge computing (MEC) environment, effective microservices deployment significantly reduces vendor costs and minimizes application latency. However, existing literatures overlook the impact of dynamic characteristics such as the frequency of user requests and geographical location, and lack in-depth consideration of the types of microservices and their interaction frequencies. To address these issues, we propose TP-MDU, a novel two-stage deployment framework for microservices. This framework is designed to learn users’ dynamic behaviors and introduces, for the first time, a minimal deployment unit. Initially, TP-MDU generates minimal deployment units online, tailored to the types of microservices and their interaction frequencies. In the initial deployment phase, aiming for load balancing, it employs a simulated annealing algorithm to achieve a superior deployment plan. During the optimization scheduling phase, it utilizes reinforcement learning algorithms and introduces dynamic information and new optimization objectives. Previous deployment plans serve as the initial state for policy learning, thus facilitating more optimal deployment decisions. This paper evaluates the performance of TP-MDU using a real dataset from Australia’s EUA and some related synthetic data. The experimental results indicate that TP-MDU outperforms other representative algorithms in performance.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.