Shear wave elastography as a marker of anisotropy in denervated muscle tissue

IF 2 Q3 NEUROSCIENCES
Olli Kutvonen , Sari-Leena Himanen , Katri Mäkelä
{"title":"Shear wave elastography as a marker of anisotropy in denervated muscle tissue","authors":"Olli Kutvonen ,&nbsp;Sari-Leena Himanen ,&nbsp;Katri Mäkelä","doi":"10.1016/j.cnp.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To assess the capability of shear wave elastography (SWE) to detect muscle denervation.</div></div><div><h3>Methods</h3><div>36 patients underwent electrodiagnostic studies (EDX) of the lower limbs and volunteered to undergo ultrasound examination of the Tibialis anterior (TA) and the Gastrocnemius medialis (GCM) muscles. A variable reflecting the level of anisotropy was created by calculating the difference between the longitudinal and transverse shear wave velocity (SWE-D).</div></div><div><h3>Results</h3><div>In the TA muscles, SWE-D correlated negatively with the quantity of fibrillation potentials (FP) and the degree of interference pattern (IP) reduction (p = 0.032, r = -0.185 and p = 0.006, r = -0.236, respectively). In the GCM muscles, SWE-D only correlated with the amount of IP reduction among patients of normal weight (p = 0.030, r = -0.285). There was also a significant difference in the overall SWE-D values in the GCM muscles between patients of normal weight and obese patients (p = 0.007).</div></div><div><h3>Conclusions</h3><div>Loss of anisotropy caused by denervation of muscle tissue may be measured quantitatively by calculating the differences between longitudinal and transverse shear wave velocities. However, obesity seems to hinder the SWE-based assessment of muscle denervation.</div></div><div><h3>Significance</h3><div>Being able to measure anisotropy caused by denervation acts as a base for further development of SWE methods to evaluate neurogenic injury.</div></div>","PeriodicalId":45697,"journal":{"name":"Clinical Neurophysiology Practice","volume":"10 ","pages":"Pages 95-103"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology Practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467981X25000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

To assess the capability of shear wave elastography (SWE) to detect muscle denervation.

Methods

36 patients underwent electrodiagnostic studies (EDX) of the lower limbs and volunteered to undergo ultrasound examination of the Tibialis anterior (TA) and the Gastrocnemius medialis (GCM) muscles. A variable reflecting the level of anisotropy was created by calculating the difference between the longitudinal and transverse shear wave velocity (SWE-D).

Results

In the TA muscles, SWE-D correlated negatively with the quantity of fibrillation potentials (FP) and the degree of interference pattern (IP) reduction (p = 0.032, r = -0.185 and p = 0.006, r = -0.236, respectively). In the GCM muscles, SWE-D only correlated with the amount of IP reduction among patients of normal weight (p = 0.030, r = -0.285). There was also a significant difference in the overall SWE-D values in the GCM muscles between patients of normal weight and obese patients (p = 0.007).

Conclusions

Loss of anisotropy caused by denervation of muscle tissue may be measured quantitatively by calculating the differences between longitudinal and transverse shear wave velocities. However, obesity seems to hinder the SWE-based assessment of muscle denervation.

Significance

Being able to measure anisotropy caused by denervation acts as a base for further development of SWE methods to evaluate neurogenic injury.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
47
审稿时长
71 days
期刊介绍: Clinical Neurophysiology Practice (CNP) is a new Open Access journal that focuses on clinical practice issues in clinical neurophysiology including relevant new research, case reports or clinical series, normal values and didactic reviews. It is an official journal of the International Federation of Clinical Neurophysiology and complements Clinical Neurophysiology which focuses on innovative research in the specialty. It has a role in supporting established clinical practice, and an educational role for trainees, technicians and practitioners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信