{"title":"Monarch: Monitoring Architecture for 5G and Beyond Network Slices","authors":"Niloy Saha;Nashid Shahriar;Muhammad Sulaiman;Noura Limam;Raouf Boutaba;Aladdin Saleh","doi":"10.1109/TNSM.2024.3479246","DOIUrl":null,"url":null,"abstract":"Data-driven algorithms play a pivotal role in the automated orchestration and management of network slices in 5G and beyond networks, however, their efficacy hinges on the timely and accurate monitoring of the network and its components. To support 5G slicing, monitoring must be comprehensive and encompass network slices end-to-end (E2E). Yet, several challenges arise with E2E network slice monitoring. Firstly, existing solutions are piecemeal and cannot correlate network-wide data from multiple sources (e.g., different network segments). Secondly, different slices can have different requirements regarding Key Performance Indicators (KPIs) and monitoring granularity, which necessitates dynamic adjustments in both KPI monitoring and data collection rates in real-time to minimize network resource overhead. To address these challenges, in this paper, we present Monarch, a scalable monitoring architecture for 5G. Monarch is designed for cloud-native 5G deployments and focuses on network slice monitoring and per-slice KPI computation. We validate the proposed architecture by implementing Monarch on a 5G network slice testbed, with up to 50 network slices. We exemplify Monarch’s role in 5G network monitoring by showcasing two scenarios: monitoring KPIs at both slice and network function levels. Our evaluations demonstrate Monarch’s scalability, with the architecture adeptly handling varying numbers of slices while maintaining consistent ingestion times between 2.25 to 2.75 ms. Furthermore, we showcase the effectiveness of Monarch’s adaptive monitoring mechanism, exemplified by a simple heuristic, on a real-world 5G dataset. The adaptive monitoring mechanism significantly reduces the overhead of network slice monitoring by up to 76% while ensuring acceptable accuracy.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 1","pages":"777-790"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10715730/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven algorithms play a pivotal role in the automated orchestration and management of network slices in 5G and beyond networks, however, their efficacy hinges on the timely and accurate monitoring of the network and its components. To support 5G slicing, monitoring must be comprehensive and encompass network slices end-to-end (E2E). Yet, several challenges arise with E2E network slice monitoring. Firstly, existing solutions are piecemeal and cannot correlate network-wide data from multiple sources (e.g., different network segments). Secondly, different slices can have different requirements regarding Key Performance Indicators (KPIs) and monitoring granularity, which necessitates dynamic adjustments in both KPI monitoring and data collection rates in real-time to minimize network resource overhead. To address these challenges, in this paper, we present Monarch, a scalable monitoring architecture for 5G. Monarch is designed for cloud-native 5G deployments and focuses on network slice monitoring and per-slice KPI computation. We validate the proposed architecture by implementing Monarch on a 5G network slice testbed, with up to 50 network slices. We exemplify Monarch’s role in 5G network monitoring by showcasing two scenarios: monitoring KPIs at both slice and network function levels. Our evaluations demonstrate Monarch’s scalability, with the architecture adeptly handling varying numbers of slices while maintaining consistent ingestion times between 2.25 to 2.75 ms. Furthermore, we showcase the effectiveness of Monarch’s adaptive monitoring mechanism, exemplified by a simple heuristic, on a real-world 5G dataset. The adaptive monitoring mechanism significantly reduces the overhead of network slice monitoring by up to 76% while ensuring acceptable accuracy.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.