{"title":"A spatial and temporal transformer-based EEG emotion recognition in VR environment.","authors":"Ming Li, Peng Yu, Yang Shen","doi":"10.3389/fnhum.2025.1517273","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of deep learning, Electroencephalograph(EEG) emotion recognition has played a significant role in affective brain-computer interfaces. Many advanced emotion recognition models have achieved excellent results. However, current research is mostly conducted in laboratory settings for emotion induction, which lacks sufficient ecological validity and differs significantly from real-world scenarios. Moreover, emotion recognition models are typically trained and tested on datasets collected in laboratory environments, with little validation of their effectiveness in real-world situations. VR, providing a highly immersive and realistic experience, is an ideal tool for emotional research. In this paper, we collect EEG data from participants while they watched VR videos. We propose a purely Transformer-based method, EmoSTT. We use two separate Transformer modules to comprehensively model the temporal and spatial information of EEG signals. We validate the effectiveness of EmoSTT on a passive paradigm collected in a laboratory environment and an active paradigm emotion dataset collected in a VR environment. Compared with state-of-the-art methods, our method achieves robust emotion classification performance and can be well transferred between different emotion elicitation paradigms.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1517273"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1517273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of deep learning, Electroencephalograph(EEG) emotion recognition has played a significant role in affective brain-computer interfaces. Many advanced emotion recognition models have achieved excellent results. However, current research is mostly conducted in laboratory settings for emotion induction, which lacks sufficient ecological validity and differs significantly from real-world scenarios. Moreover, emotion recognition models are typically trained and tested on datasets collected in laboratory environments, with little validation of their effectiveness in real-world situations. VR, providing a highly immersive and realistic experience, is an ideal tool for emotional research. In this paper, we collect EEG data from participants while they watched VR videos. We propose a purely Transformer-based method, EmoSTT. We use two separate Transformer modules to comprehensively model the temporal and spatial information of EEG signals. We validate the effectiveness of EmoSTT on a passive paradigm collected in a laboratory environment and an active paradigm emotion dataset collected in a VR environment. Compared with state-of-the-art methods, our method achieves robust emotion classification performance and can be well transferred between different emotion elicitation paradigms.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.