Bio-preservative potential of marjoram and fennel essential oil nano-emulsions against toxigenic fungi in citrus: integrating in-vitro, in-vivo, and in-silico approaches.
Merihane Gharzouli, Abdel Hakim Aouf, Shimaa Moawad, Hatem Ali, Tawfiq Alsulami, Amr Farouk, Karolina Hoppe, Ahmed Noah Badr
{"title":"Bio-preservative potential of marjoram and fennel essential oil nano-emulsions against toxigenic fungi in citrus: integrating <i>in-vitro</i>, <i>in</i>-<i>vivo</i>, and <i>in</i>-<i>silico</i> approaches.","authors":"Merihane Gharzouli, Abdel Hakim Aouf, Shimaa Moawad, Hatem Ali, Tawfiq Alsulami, Amr Farouk, Karolina Hoppe, Ahmed Noah Badr","doi":"10.1080/19440049.2025.2473551","DOIUrl":null,"url":null,"abstract":"<p><p>Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic <i>Penicillium</i> fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated. A simulated medium with fungal spores was used to assess anti-toxigenic activity, and a simulated infection experiment was conducted with orange and lemon fruits. The capacity and mechanisms of aromatic constituents were analysed through molecular docking assays targeting enzymes involved in fungal growth and mycotoxin production. The nanoparticles exhibited good stability (89.17%-92.41%) and compact formulation (density of 0.92-0.96 g/mL). Results demonstrated substantial effectiveness of nano-emulsions against toxigenic fungi, with major aromatic compounds identified as terpinene-4-ol (18%) and <i>γ</i>-terpinene (11%) in marjoram and estragole (38%) and anethole (29%) in fennel oil. Diffusion assays revealed significant anti-pathogen effects (8.33-11 mm) and antifungal activity (33.33 ± 2.88-89.33 ± 1.15 mm) of marjoram and fennel nano-emulsions. Results regarding simulated infected fruit reflect spoilage delay without impacting fruit quality or sensory. The interactions between oil or nano-emulsions and fungal enzymes showed strong binding-free energy values, with significant docking scores (-6.6 to -7.0 kcal/mol) for aromatic constituents. In conclusion, aromatic antifungals offer a promising strategy for controlling <i>Penicillium</i>, enhancing the safety and quality of oranges and lemons, with oil nanoparticles improving antifungal efficacy by significantly reducing mycelium weight and spore germination.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"1-19"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/19440049.2025.2473551","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic Penicillium fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated. A simulated medium with fungal spores was used to assess anti-toxigenic activity, and a simulated infection experiment was conducted with orange and lemon fruits. The capacity and mechanisms of aromatic constituents were analysed through molecular docking assays targeting enzymes involved in fungal growth and mycotoxin production. The nanoparticles exhibited good stability (89.17%-92.41%) and compact formulation (density of 0.92-0.96 g/mL). Results demonstrated substantial effectiveness of nano-emulsions against toxigenic fungi, with major aromatic compounds identified as terpinene-4-ol (18%) and γ-terpinene (11%) in marjoram and estragole (38%) and anethole (29%) in fennel oil. Diffusion assays revealed significant anti-pathogen effects (8.33-11 mm) and antifungal activity (33.33 ± 2.88-89.33 ± 1.15 mm) of marjoram and fennel nano-emulsions. Results regarding simulated infected fruit reflect spoilage delay without impacting fruit quality or sensory. The interactions between oil or nano-emulsions and fungal enzymes showed strong binding-free energy values, with significant docking scores (-6.6 to -7.0 kcal/mol) for aromatic constituents. In conclusion, aromatic antifungals offer a promising strategy for controlling Penicillium, enhancing the safety and quality of oranges and lemons, with oil nanoparticles improving antifungal efficacy by significantly reducing mycelium weight and spore germination.
期刊介绍:
Food Additives & Contaminants: Part A publishes original research papers and critical reviews covering analytical methodology, occurrence, persistence, safety evaluation, detoxification and regulatory control of natural and man-made additives and contaminants in the food and animal feed chain. Papers are published in the areas of food additives including flavourings, pesticide and veterinary drug residues, environmental contaminants, plant toxins, mycotoxins, marine biotoxins, trace elements, migration from food packaging, food process contaminants, adulteration, authenticity and allergenicity of foods. Papers are published on animal feed where residues and contaminants can give rise to food safety concerns. Contributions cover chemistry, biochemistry and bioavailability of these substances, factors affecting levels during production, processing, packaging and storage; the development of novel foods and processes; exposure and risk assessment.