{"title":"Microstructural Analysis and Optical Linearity and Nonlinearity of Nanostructured Al─Doped ZnO/SnO2 Thin Films","authors":"Cosmas Muiva, Edigar Muchuweni, Dineo Pono Sebuso, Thabang Kealeboga Matabana, Mosimanegape Thobega, Henry Vasco","doi":"10.1002/crat.202400118","DOIUrl":null,"url":null,"abstract":"<p>Al─doped ZnO/SnO<sub>2</sub> (Al─ZnO/SnO<sub>2</sub>) thin films are prepared using spray pyrolysis followed by an investigation of their microstructural and optical properties. Unlike ZnO, Al─doped ZnO (Al─ZnO), SnO<sub>2</sub> and Al─doped SnO<sub>2</sub> (Al─SnO<sub>2</sub>) films, which exhibited polycrystalline structures with distinct peaks, Al─ZnO/SnO<sub>2</sub> films displayed a single sharp peak, indicating strong preferential orientation along the ZnO (100) plane. Scanning electron microscopy revealed spherical aggregates of random polycrystals in ZnO and SnO<sub>2</sub> samples, while Al─ZnO/SnO<sub>2</sub> films have more pores/voids and various nanostructures, including nanorods growing parallel to the substrate. These nanorods provided 1D conductive pathways that closed the open-circuits created by the pores/voids, thereby improving electron transport. The refractive index (<i>n</i>) and extinction coefficient (<i>k</i>) are evaluated using the Cauchy normal dispersion model, and the obtained values are used to determine other linear and nonlinear optical parameters. Al─ZnO/SnO<sub>2</sub> films exhibited low <i>n</i> (≈1.45) and <i>k</i> (≈0) in the visible region, an enhanced band gap (≈3.8 eV), and low Urbach energy (≈84 meV), which minimized light scattering losses, resulting in high visible region transmittance (≈90%). The synergy between high transparency and improved electrical conductivity inferred from the enhanced microstructural and optoelectronic properties makes these films promising candidates for use as transparent conducting electrodes in optoelectronic devices.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400118","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Al─doped ZnO/SnO2 (Al─ZnO/SnO2) thin films are prepared using spray pyrolysis followed by an investigation of their microstructural and optical properties. Unlike ZnO, Al─doped ZnO (Al─ZnO), SnO2 and Al─doped SnO2 (Al─SnO2) films, which exhibited polycrystalline structures with distinct peaks, Al─ZnO/SnO2 films displayed a single sharp peak, indicating strong preferential orientation along the ZnO (100) plane. Scanning electron microscopy revealed spherical aggregates of random polycrystals in ZnO and SnO2 samples, while Al─ZnO/SnO2 films have more pores/voids and various nanostructures, including nanorods growing parallel to the substrate. These nanorods provided 1D conductive pathways that closed the open-circuits created by the pores/voids, thereby improving electron transport. The refractive index (n) and extinction coefficient (k) are evaluated using the Cauchy normal dispersion model, and the obtained values are used to determine other linear and nonlinear optical parameters. Al─ZnO/SnO2 films exhibited low n (≈1.45) and k (≈0) in the visible region, an enhanced band gap (≈3.8 eV), and low Urbach energy (≈84 meV), which minimized light scattering losses, resulting in high visible region transmittance (≈90%). The synergy between high transparency and improved electrical conductivity inferred from the enhanced microstructural and optoelectronic properties makes these films promising candidates for use as transparent conducting electrodes in optoelectronic devices.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing