Microstructural Analysis and Optical Linearity and Nonlinearity of Nanostructured Al─Doped ZnO/SnO2 Thin Films

IF 1.5 4区 材料科学 Q3 Chemistry
Cosmas Muiva, Edigar Muchuweni, Dineo Pono Sebuso, Thabang Kealeboga Matabana, Mosimanegape Thobega, Henry Vasco
{"title":"Microstructural Analysis and Optical Linearity and Nonlinearity of Nanostructured Al─Doped ZnO/SnO2 Thin Films","authors":"Cosmas Muiva,&nbsp;Edigar Muchuweni,&nbsp;Dineo Pono Sebuso,&nbsp;Thabang Kealeboga Matabana,&nbsp;Mosimanegape Thobega,&nbsp;Henry Vasco","doi":"10.1002/crat.202400118","DOIUrl":null,"url":null,"abstract":"<p>Al─doped ZnO/SnO<sub>2</sub> (Al─ZnO/SnO<sub>2</sub>) thin films are prepared using spray pyrolysis followed by an investigation of their microstructural and optical properties. Unlike ZnO, Al─doped ZnO (Al─ZnO), SnO<sub>2</sub> and Al─doped SnO<sub>2</sub> (Al─SnO<sub>2</sub>) films, which exhibited polycrystalline structures with distinct peaks, Al─ZnO/SnO<sub>2</sub> films displayed a single sharp peak, indicating strong preferential orientation along the ZnO (100) plane. Scanning electron microscopy revealed spherical aggregates of random polycrystals in ZnO and SnO<sub>2</sub> samples, while Al─ZnO/SnO<sub>2</sub> films have more pores/voids and various nanostructures, including nanorods growing parallel to the substrate. These nanorods provided 1D conductive pathways that closed the open-circuits created by the pores/voids, thereby improving electron transport. The refractive index (<i>n</i>) and extinction coefficient (<i>k</i>) are evaluated using the Cauchy normal dispersion model, and the obtained values are used to determine other linear and nonlinear optical parameters. Al─ZnO/SnO<sub>2</sub> films exhibited low <i>n</i> (≈1.45) and <i>k</i> (≈0) in the visible region, an enhanced band gap (≈3.8 eV), and low Urbach energy (≈84 meV), which minimized light scattering losses, resulting in high visible region transmittance (≈90%). The synergy between high transparency and improved electrical conductivity inferred from the enhanced microstructural and optoelectronic properties makes these films promising candidates for use as transparent conducting electrodes in optoelectronic devices.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400118","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Al─doped ZnO/SnO2 (Al─ZnO/SnO2) thin films are prepared using spray pyrolysis followed by an investigation of their microstructural and optical properties. Unlike ZnO, Al─doped ZnO (Al─ZnO), SnO2 and Al─doped SnO2 (Al─SnO2) films, which exhibited polycrystalline structures with distinct peaks, Al─ZnO/SnO2 films displayed a single sharp peak, indicating strong preferential orientation along the ZnO (100) plane. Scanning electron microscopy revealed spherical aggregates of random polycrystals in ZnO and SnO2 samples, while Al─ZnO/SnO2 films have more pores/voids and various nanostructures, including nanorods growing parallel to the substrate. These nanorods provided 1D conductive pathways that closed the open-circuits created by the pores/voids, thereby improving electron transport. The refractive index (n) and extinction coefficient (k) are evaluated using the Cauchy normal dispersion model, and the obtained values are used to determine other linear and nonlinear optical parameters. Al─ZnO/SnO2 films exhibited low n (≈1.45) and k (≈0) in the visible region, an enhanced band gap (≈3.8 eV), and low Urbach energy (≈84 meV), which minimized light scattering losses, resulting in high visible region transmittance (≈90%). The synergy between high transparency and improved electrical conductivity inferred from the enhanced microstructural and optoelectronic properties makes these films promising candidates for use as transparent conducting electrodes in optoelectronic devices.

Abstract Image

纳米Al掺杂ZnO/SnO2薄膜的微观结构分析及光学线性和非线性
采用喷雾热解法制备了Al掺杂ZnO/SnO2 (Al─ZnO/SnO2)薄膜,并对其微观结构和光学性能进行了研究。与ZnO、Al─掺杂ZnO (Al─ZnO)、SnO2和Al─掺杂SnO2 (Al─SnO2)薄膜不同,Al─ZnO/SnO2薄膜在ZnO(100)平面上呈现出明显的尖峰结构,Al─ZnO/SnO2薄膜在ZnO(100)平面上呈现出强烈的择优取向。扫描电镜显示,ZnO和SnO2薄膜中存在球形无序多晶聚集,而Al─ZnO/SnO2薄膜具有更多的孔隙和各种纳米结构,包括平行于衬底生长的纳米棒。这些纳米棒提供了一维导电途径,关闭了由孔隙/空隙产生的开路,从而改善了电子传递。折射率(n)和消光系数(k)使用柯西正态色散模型进行评估,并获得的值用于确定其他线性和非线性光学参数。Al─ZnO/SnO2薄膜在可见光区表现出较低的n(≈1.45)和k(≈0),增强的带隙(≈3.8 eV)和较低的乌尔巴赫能(≈84 meV),使光散射损失最小化,从而获得较高的可见光区透过率(≈90%)。从增强的微结构和光电子性能推断出的高透明度和改善的导电性之间的协同作用使这些薄膜有希望用作光电器件中的透明导电电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信