Taha Sheheryar, Ye Tian, Bo Lv, Xiuqin Chu and Jinhui Shi
{"title":"A graphene-based tunable polarization insensitive terahertz metasurface absorber for multi-band high-efficiency applications","authors":"Taha Sheheryar, Ye Tian, Bo Lv, Xiuqin Chu and Jinhui Shi","doi":"10.1039/D4TC05520A","DOIUrl":null,"url":null,"abstract":"<p >In this paper, we designed a novel tunable terahertz (THz) absorber that has unique properties of graphene integrated within a dual-layer metasurface structure. The proposed absorber demonstrates excellent performance by achieving eight distinct absorption peaks from 3.9 THz to 9.73 THz with an average absorption efficiency of 99.3%. This is achieved through the tunable surface conductivity of graphene which enables dynamic modulation of resonant frequencies <em>via</em> chemical potential adjustment. The design includes a gold base layer for total reflection, gallium arsenide (GaAs) dielectric spacers for optimum impedance matching and graphene patches to introduce multi-band absorption modes. Simulation results show the absorber's tunability, polarization insensitivity and angular stability which makes it highly adaptable for applications in medical diagnostics, material characterization, security screening and terahertz sensing. The proposed absorber's innovative architecture and simple design offers a versatile solution for the evolving demands of modern terahertz technologies.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 11","pages":" 5545-5554"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05520a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we designed a novel tunable terahertz (THz) absorber that has unique properties of graphene integrated within a dual-layer metasurface structure. The proposed absorber demonstrates excellent performance by achieving eight distinct absorption peaks from 3.9 THz to 9.73 THz with an average absorption efficiency of 99.3%. This is achieved through the tunable surface conductivity of graphene which enables dynamic modulation of resonant frequencies via chemical potential adjustment. The design includes a gold base layer for total reflection, gallium arsenide (GaAs) dielectric spacers for optimum impedance matching and graphene patches to introduce multi-band absorption modes. Simulation results show the absorber's tunability, polarization insensitivity and angular stability which makes it highly adaptable for applications in medical diagnostics, material characterization, security screening and terahertz sensing. The proposed absorber's innovative architecture and simple design offers a versatile solution for the evolving demands of modern terahertz technologies.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors