Low-Power a-IGZO TFT Emission Driver With Shoot-Through Current-Free QB Control Block

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Won-Been Jeong;Sang-Hoon Kim;Seung-Woo Lee
{"title":"Low-Power a-IGZO TFT Emission Driver With Shoot-Through Current-Free QB Control Block","authors":"Won-Been Jeong;Sang-Hoon Kim;Seung-Woo Lee","doi":"10.1109/JEDS.2025.3544840","DOIUrl":null,"url":null,"abstract":"This paper proposes an emission driver for active-matrix organic light emitting diode (AMOLED) displays using amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs). The proposed circuit effectively eliminates shoot-through current in QB control block, achieving 97% reduction in power consumption compared to conventional one. It stably operates in both depletion and enhancement modes and supports pulse-width modulation (PWM) driving for better low gray level expression of AMOLED displays. Simulation results show that the proposed circuit has the robust performance for high-resolution AMOLED displays.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"139-144"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10899845","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10899845/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an emission driver for active-matrix organic light emitting diode (AMOLED) displays using amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs). The proposed circuit effectively eliminates shoot-through current in QB control block, achieving 97% reduction in power consumption compared to conventional one. It stably operates in both depletion and enhancement modes and supports pulse-width modulation (PWM) driving for better low gray level expression of AMOLED displays. Simulation results show that the proposed circuit has the robust performance for high-resolution AMOLED displays.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信