{"title":"Heterogeneity-induced thermal mismatch in BGA interconnects: Insights from mechanical-thermal finite element modeling","authors":"Liu Chu , Jiajia Shi , Xu Long","doi":"10.1016/j.microrel.2025.115703","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal expansion mismatch due to the heterogeneous materials in ball grid array (BGA) interconnects of electronic packaging structures often results in localized strain concentration, leading to creep, fatigue, or potential failure. Modeling BGA solder balls independently, without considering connected and contacting components, fails to comprehensively monitor the system's state. In this study, a mechanical-thermal finite element model (FEM) comprising solder balls, a printed circuit board (PCB), chips, and underfill is systematically developed. Time-dependent nonlinear analysis is performed on Sn-Ag-Cu (SAC) solder-bumped flip chips in PCB assemblies subjected to thermal cycling. Thermal gradient contours illustrate inhomogeneous in-plane and vertical thermal diffusion within the components. The Garofalo model is employed in the FEM to simulate visco-plastic behavior. The results reveal significant thermal gradient mismatches due to the intrinsic properties of heterogeneous components, which are often overlooked in independent material studies. Additionally, the central region of the BGA exhibits more pronounced creep strain compared to edge solder balls. These findings provide valuable insights for optimizing BGA geometric design. This work also offers a comprehensive framework to quantify thermal mismatches and simulate creep behavior under thermal cycling based on FEM.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"168 ","pages":"Article 115703"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425001167","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal expansion mismatch due to the heterogeneous materials in ball grid array (BGA) interconnects of electronic packaging structures often results in localized strain concentration, leading to creep, fatigue, or potential failure. Modeling BGA solder balls independently, without considering connected and contacting components, fails to comprehensively monitor the system's state. In this study, a mechanical-thermal finite element model (FEM) comprising solder balls, a printed circuit board (PCB), chips, and underfill is systematically developed. Time-dependent nonlinear analysis is performed on Sn-Ag-Cu (SAC) solder-bumped flip chips in PCB assemblies subjected to thermal cycling. Thermal gradient contours illustrate inhomogeneous in-plane and vertical thermal diffusion within the components. The Garofalo model is employed in the FEM to simulate visco-plastic behavior. The results reveal significant thermal gradient mismatches due to the intrinsic properties of heterogeneous components, which are often overlooked in independent material studies. Additionally, the central region of the BGA exhibits more pronounced creep strain compared to edge solder balls. These findings provide valuable insights for optimizing BGA geometric design. This work also offers a comprehensive framework to quantify thermal mismatches and simulate creep behavior under thermal cycling based on FEM.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.