Jianan Wen , Fabian Luis Vargas , Fukun Zhu , Daniel Reiser , Andrea Baroni , Markus Fritscher , Eduardo Perez , Marc Reichenbach , Christian Wenger , Milos Krstic
{"title":"RRAMulator: An efficient FPGA-based emulator for RRAM crossbar with device variability and energy consumption evaluation","authors":"Jianan Wen , Fabian Luis Vargas , Fukun Zhu , Daniel Reiser , Andrea Baroni , Markus Fritscher , Eduardo Perez , Marc Reichenbach , Christian Wenger , Milos Krstic","doi":"10.1016/j.microrel.2025.115630","DOIUrl":null,"url":null,"abstract":"<div><div>The in-memory computing (IMC) systems based on emerging technologies have gained significant attention due to their potential to enhance performance and energy efficiency by minimizing data movement between memory and processing unit, which is especially beneficial for data-intensive applications. Designing and evaluating systems utilizing emerging memory technologies, such as resistive RAM (RRAM), poses considerable challenges due to the limited support from electronics design automation (EDA) tools for rapid development and design space exploration. Additionally, incorporating technology-dependent variability into system-level simulations is critical to accurately assess the impact on system reliability and performance. To bridge this gap, we propose RRAMulator, a field-programmable gate array (FPGA) based hardware emulator for RRAM crossbar array. To avoid the complex device models capturing the nonlinear current–voltage (IV) relationships that degrade emulation speed and increase hardware utilization, we propose a device and variability modeling approach based on device measurements. We deploy look-up tables (LUTs) for device modeling and use the multivariate kernel density estimation (KDE) method to augment existing data, extending data variety and avoiding repetitive data usage. The proposed emulator achieves cycle-accurate, real-time emulations and provides information such as latency and energy consumption for matrix mapping and vector–matrix multiplications (VMMs). Experimental results show a significant reduction in emulation time compared to conventional behavioral simulations. Additionally, an RRAM-based discrete Fourier transform (DFT) accelerator is analyzed as a case study featuring a range of in-depth system assessments.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"168 ","pages":"Article 115630"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425000435","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The in-memory computing (IMC) systems based on emerging technologies have gained significant attention due to their potential to enhance performance and energy efficiency by minimizing data movement between memory and processing unit, which is especially beneficial for data-intensive applications. Designing and evaluating systems utilizing emerging memory technologies, such as resistive RAM (RRAM), poses considerable challenges due to the limited support from electronics design automation (EDA) tools for rapid development and design space exploration. Additionally, incorporating technology-dependent variability into system-level simulations is critical to accurately assess the impact on system reliability and performance. To bridge this gap, we propose RRAMulator, a field-programmable gate array (FPGA) based hardware emulator for RRAM crossbar array. To avoid the complex device models capturing the nonlinear current–voltage (IV) relationships that degrade emulation speed and increase hardware utilization, we propose a device and variability modeling approach based on device measurements. We deploy look-up tables (LUTs) for device modeling and use the multivariate kernel density estimation (KDE) method to augment existing data, extending data variety and avoiding repetitive data usage. The proposed emulator achieves cycle-accurate, real-time emulations and provides information such as latency and energy consumption for matrix mapping and vector–matrix multiplications (VMMs). Experimental results show a significant reduction in emulation time compared to conventional behavioral simulations. Additionally, an RRAM-based discrete Fourier transform (DFT) accelerator is analyzed as a case study featuring a range of in-depth system assessments.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.