Dietary selenium mitigates cadmium-induced apoptosis and inflammation in chicken testicles by inhibiting oxidative stress through the activation of the Nrf2/HO-1 signaling pathway

IF 3.8 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Yulong Li , Shu Wang , Rui Feng
{"title":"Dietary selenium mitigates cadmium-induced apoptosis and inflammation in chicken testicles by inhibiting oxidative stress through the activation of the Nrf2/HO-1 signaling pathway","authors":"Yulong Li ,&nbsp;Shu Wang ,&nbsp;Rui Feng","doi":"10.1016/j.psj.2025.104990","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) is a non-essential heavy metal that is highly toxic to testicle. Selenium (Se) is known to possess antagonistic effects against Cd toxicity, yet the precise mechanisms through which Se counteracts Cd-induced testicular damage in chickens through Nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling pathway, oxidative stress (OS), apoptosis, and inflammation remained unclear. In the present study, the experimental model of chicken testis was established by incorporating CdCl<sub>2</sub> and Na<sub>2</sub>SeO<sub>3</sub> into the dietary intake. After 60 days, chickens from each group were euthanized, and testicular and serum samples were subsequently collected. Ultrastructural assessment revealed that Se supplementation significantly mitigated the testicular damage induced by Cd. Se effectively suppressed the Cd-induced elevation in ROS, MDA, and H<sub>2</sub>O<sub>2</sub> levels, while also preventing the downregulation of CAT, GSH, and T-AOC levels. Furthermore, Se administration ameliorated the reduction in the expression levels of Nrf2, HO-1, and Bcl-2 induced by Cd, and counteracted the overexpression of Caspase-3, Bax, Cyt-c, and Caspase-9, TNF-α, IL-2, IL-6, and IL-1β. Meanwhile, immunofluorescence data demonstrated that Se attenuated the Cd-induced decrease in Nrf2 and HO-1 expression and the upregulation of IL-6 expression. In conclusion, this study elucidated that Se might mitigate Cd-induced oxidative stress in chicken testicles through the stimulation of the Nrf2/HO-1 signaling pathway, thereby inhibiting apoptosis and inflammation, and was beneficial in reducing Cd-induced testicular injury.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 4","pages":"Article 104990"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125002299","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) is a non-essential heavy metal that is highly toxic to testicle. Selenium (Se) is known to possess antagonistic effects against Cd toxicity, yet the precise mechanisms through which Se counteracts Cd-induced testicular damage in chickens through Nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling pathway, oxidative stress (OS), apoptosis, and inflammation remained unclear. In the present study, the experimental model of chicken testis was established by incorporating CdCl2 and Na2SeO3 into the dietary intake. After 60 days, chickens from each group were euthanized, and testicular and serum samples were subsequently collected. Ultrastructural assessment revealed that Se supplementation significantly mitigated the testicular damage induced by Cd. Se effectively suppressed the Cd-induced elevation in ROS, MDA, and H2O2 levels, while also preventing the downregulation of CAT, GSH, and T-AOC levels. Furthermore, Se administration ameliorated the reduction in the expression levels of Nrf2, HO-1, and Bcl-2 induced by Cd, and counteracted the overexpression of Caspase-3, Bax, Cyt-c, and Caspase-9, TNF-α, IL-2, IL-6, and IL-1β. Meanwhile, immunofluorescence data demonstrated that Se attenuated the Cd-induced decrease in Nrf2 and HO-1 expression and the upregulation of IL-6 expression. In conclusion, this study elucidated that Se might mitigate Cd-induced oxidative stress in chicken testicles through the stimulation of the Nrf2/HO-1 signaling pathway, thereby inhibiting apoptosis and inflammation, and was beneficial in reducing Cd-induced testicular injury.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Poultry Science
Poultry Science 农林科学-奶制品与动物科学
CiteScore
7.60
自引率
15.90%
发文量
0
审稿时长
94 days
期刊介绍: First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers. An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信