Innovative AI strategies for enhancing smart building operations through digital twins: A survey

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Adel Oulefki , Hamza Kheddar , Abbes Amira , Fatih Kurugollu , Yassine Himeur , Ahcene Bounceur
{"title":"Innovative AI strategies for enhancing smart building operations through digital twins: A survey","authors":"Adel Oulefki ,&nbsp;Hamza Kheddar ,&nbsp;Abbes Amira ,&nbsp;Fatih Kurugollu ,&nbsp;Yassine Himeur ,&nbsp;Ahcene Bounceur","doi":"10.1016/j.enbuild.2025.115567","DOIUrl":null,"url":null,"abstract":"<div><div>The Digital Twins (DT) have emerged as a digital transformation automation process with ubiquitous applications that span various domains, including buildings, manufacturing, and healthcare. These virtual clones of physical systems provide relevant insights, enhance decision-making processes, and optimize operations, along with allowing the prediction of future operations. Artificial intelligence (AI) has been instrumental in enhancing the functionalities of DT. This survey paper explores recent developments in advanced AI algorithms tailored for DT in building settings. Moreover, a wide spectrum of AI techniques designed to address the challenges posed by DT in buildings are categorized and reviewed, including convolution neural networks (CNN), recurrent neural networks (RNNs), and generative adversarial networks (GANs), among other cutting edge transformative technologies. Furthermore, the integration of reinforcement learning (RL) and transfer learning (TL) into the DT ecosystem is discussed. This survey explores practical use cases, such as predictive scenarios, anomaly detection, and optimization of DT models. The incorporation of multimodal AI sensor data and edge computing in enhancing the accuracy and efficiency of DT is analyzed. Additionally, challenges and future directions in the field are explored, including data privacy concerns using Blockchain (BC), scalability issues, and the potential impact of quantum computing (QC) and large language models (LLMs) on DT technology. This comprehensive survey serves as a valuable resource for researchers, practitioners, and decision makers looking to utilize cutting-edge techniques to harness the full potential of DT technology in smart buildings (SB).</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"335 ","pages":"Article 115567"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877882500297X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Digital Twins (DT) have emerged as a digital transformation automation process with ubiquitous applications that span various domains, including buildings, manufacturing, and healthcare. These virtual clones of physical systems provide relevant insights, enhance decision-making processes, and optimize operations, along with allowing the prediction of future operations. Artificial intelligence (AI) has been instrumental in enhancing the functionalities of DT. This survey paper explores recent developments in advanced AI algorithms tailored for DT in building settings. Moreover, a wide spectrum of AI techniques designed to address the challenges posed by DT in buildings are categorized and reviewed, including convolution neural networks (CNN), recurrent neural networks (RNNs), and generative adversarial networks (GANs), among other cutting edge transformative technologies. Furthermore, the integration of reinforcement learning (RL) and transfer learning (TL) into the DT ecosystem is discussed. This survey explores practical use cases, such as predictive scenarios, anomaly detection, and optimization of DT models. The incorporation of multimodal AI sensor data and edge computing in enhancing the accuracy and efficiency of DT is analyzed. Additionally, challenges and future directions in the field are explored, including data privacy concerns using Blockchain (BC), scalability issues, and the potential impact of quantum computing (QC) and large language models (LLMs) on DT technology. This comprehensive survey serves as a valuable resource for researchers, practitioners, and decision makers looking to utilize cutting-edge techniques to harness the full potential of DT technology in smart buildings (SB).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信