Rapid screening of fumonisins in maize using near-infrared spectroscopy (NIRS) and machine learning algorithms

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Bruna Carbas , Pedro Sampaio , Sílvia Cruz Barros , Andreia Freitas , Ana Sanches Silva , Carla Brites
{"title":"Rapid screening of fumonisins in maize using near-infrared spectroscopy (NIRS) and machine learning algorithms","authors":"Bruna Carbas ,&nbsp;Pedro Sampaio ,&nbsp;Sílvia Cruz Barros ,&nbsp;Andreia Freitas ,&nbsp;Ana Sanches Silva ,&nbsp;Carla Brites","doi":"10.1016/j.fochx.2025.102351","DOIUrl":null,"url":null,"abstract":"<div><div>Fumonisins occurrence in maize represents a significant global challenge, impacting economic stability and food safety. This study evaluates the potential of near-infrared (NIR) spectroscopy combined with chemometric algorithms to detect fumonisins in maize. For fumonisin B1 (FB1) and B2 (FB2) levels were developed predictive NIR models using partial least squares (PLS) and artificial neural networks (ANN). PLS models demonstrated strong correlation coefficient (R<sup>2</sup>) values of 0.90 (FB1), 0.98 (FB2), and 0.91 (FB1 + FB2) for calibration, with ratio of prediction to deviation (RPD) values ranging 2.8–3.6. Similarly, ANN models showed good predictive performance, particularly for FB1 + FB2, with <em>R</em> = 0.99, and the root means square error (RMSE) of 131 μg/kg for calibration; and <em>R</em> = 0.95, RMSE = 656 μg/kg for validation.</div><div>These findings underscore the efficacy of NIR spectroscopy as a rapid, non-destructive tool for fumonisin screening in maize, with chemometric algorithms enhancing model accuracy, offering a valuable method for ensuring food safety.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"27 ","pages":"Article 102351"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525001981","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fumonisins occurrence in maize represents a significant global challenge, impacting economic stability and food safety. This study evaluates the potential of near-infrared (NIR) spectroscopy combined with chemometric algorithms to detect fumonisins in maize. For fumonisin B1 (FB1) and B2 (FB2) levels were developed predictive NIR models using partial least squares (PLS) and artificial neural networks (ANN). PLS models demonstrated strong correlation coefficient (R2) values of 0.90 (FB1), 0.98 (FB2), and 0.91 (FB1 + FB2) for calibration, with ratio of prediction to deviation (RPD) values ranging 2.8–3.6. Similarly, ANN models showed good predictive performance, particularly for FB1 + FB2, with R = 0.99, and the root means square error (RMSE) of 131 μg/kg for calibration; and R = 0.95, RMSE = 656 μg/kg for validation.
These findings underscore the efficacy of NIR spectroscopy as a rapid, non-destructive tool for fumonisin screening in maize, with chemometric algorithms enhancing model accuracy, offering a valuable method for ensuring food safety.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信