Dihydromyricetin Promotes Glucagon-Like Peptide-1 Secretion and Improves Insulin Resistance by Modulation of the Gut Microbiota-CDCA Pathway

IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Pengfei Li, Yong Zhang, Hedong Lang, Pengfei Hou, Yu Yao, Ruiliang Zhang, Xiaolan Wang, Qianyong Zhang, Mantian Mi, Long Yi
{"title":"Dihydromyricetin Promotes Glucagon-Like Peptide-1 Secretion and Improves Insulin Resistance by Modulation of the Gut Microbiota-CDCA Pathway","authors":"Pengfei Li, Yong Zhang, Hedong Lang, Pengfei Hou, Yu Yao, Ruiliang Zhang, Xiaolan Wang, Qianyong Zhang, Mantian Mi, Long Yi","doi":"10.1002/mnfr.202400491","DOIUrl":null,"url":null,"abstract":"Insulin resistance is a common metabolic disease, and its pathogenesis is still unclear. The decrease of glucagon-like peptide-1 (GLP-1) level mediated by the alteration of gut microbiota may be the pathogenesis. The study was to investigate the regulatory effect of dihydromyricetin (DHM) on GLP-1 level and insulin resistance induced by high-fat diet (HFD), and to further explore its possible molecular mechanism. Mice were fed an HFD to establish the model of insulin resistance to determine whether DHM had a protective effect. DHM could improve insulin resistance. DHM increased serum GLP-1 by improving intestinal GLP-1 secretion and inhibiting GLP-1 decomposition, associated with the alteration of intestinal intraepithelial lymphocytes (IELs) proportions and decreased expression of CD26 in IELs and TCRαβ<sup>+</sup> CD8αβ<sup>+</sup> IELs in HFD-induced mice. DHM could ameliorate GLP-1 level and insulin resistance by modulation of gut microbiota and the metabolites, particularly the regulation of chenodeoxycholic acid (CDCA) content, followed by the inhibition of farnesoid X receptor (FXR) expression in intestinal L cells and increased glucagon gene (Gcg) mRNA expression and GLP-1 secretion. This research demonstrates the role of “gut microbiota-CDCA” pathway in the improvement of intestinal GLP-1 levels in HFD-induced mice by DHM administration, providing a new target for the prevention of insulin resistance.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"87 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400491","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin resistance is a common metabolic disease, and its pathogenesis is still unclear. The decrease of glucagon-like peptide-1 (GLP-1) level mediated by the alteration of gut microbiota may be the pathogenesis. The study was to investigate the regulatory effect of dihydromyricetin (DHM) on GLP-1 level and insulin resistance induced by high-fat diet (HFD), and to further explore its possible molecular mechanism. Mice were fed an HFD to establish the model of insulin resistance to determine whether DHM had a protective effect. DHM could improve insulin resistance. DHM increased serum GLP-1 by improving intestinal GLP-1 secretion and inhibiting GLP-1 decomposition, associated with the alteration of intestinal intraepithelial lymphocytes (IELs) proportions and decreased expression of CD26 in IELs and TCRαβ+ CD8αβ+ IELs in HFD-induced mice. DHM could ameliorate GLP-1 level and insulin resistance by modulation of gut microbiota and the metabolites, particularly the regulation of chenodeoxycholic acid (CDCA) content, followed by the inhibition of farnesoid X receptor (FXR) expression in intestinal L cells and increased glucagon gene (Gcg) mRNA expression and GLP-1 secretion. This research demonstrates the role of “gut microbiota-CDCA” pathway in the improvement of intestinal GLP-1 levels in HFD-induced mice by DHM administration, providing a new target for the prevention of insulin resistance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Nutrition & Food Research
Molecular Nutrition & Food Research 工程技术-食品科技
CiteScore
8.70
自引率
1.90%
发文量
250
审稿时长
1.7 months
期刊介绍: Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines: Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics. Immunology: Understanding the interactions of food and the immune system. Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes. Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信