{"title":"Amorphization evolution study of CrCoFeNiMn high entropy alloy for mechanical performance optimization by deep potential molecular dynamics","authors":"Wentao Zhou, Jia Song, Lve Lin, Huilong Yang, Shaoqiang Guo, Guang Ran, Yafei Wang","doi":"10.1038/s41524-025-01561-1","DOIUrl":null,"url":null,"abstract":"<p>In the study, we explore the structural evolution of Cantor high-entropy alloy (HEA) under different super-cooling rates and its correlation with mechanical property variations by the developed machine learning-driven deep potential molecular dynamics (DPMD) simulation. Our results reveal the critical super-cooling rate of amorphization-crystallization transition of Cantor alloy and the local structure constitutions at different temperatures during the super-cooling process. The associated mechanical property studies demonstrate the glassy Cantor alloy amorphized at high super-cooling rate exhibits a superior capability of ductility but this capability is unrelated to the amorphization cooling rates. While the high strength of Cantor alloy requires a lower super-cooling rate which might result in the crystallization, amorphizing the Cantor alloy at the critical super-cooling rate of amorphization-crystallization transition could compatibilize both ductility and strength capabilities. Such a discovery sheds new lights on the material development and its mechanical performance optimization for industrial applications.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"92 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01561-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the study, we explore the structural evolution of Cantor high-entropy alloy (HEA) under different super-cooling rates and its correlation with mechanical property variations by the developed machine learning-driven deep potential molecular dynamics (DPMD) simulation. Our results reveal the critical super-cooling rate of amorphization-crystallization transition of Cantor alloy and the local structure constitutions at different temperatures during the super-cooling process. The associated mechanical property studies demonstrate the glassy Cantor alloy amorphized at high super-cooling rate exhibits a superior capability of ductility but this capability is unrelated to the amorphization cooling rates. While the high strength of Cantor alloy requires a lower super-cooling rate which might result in the crystallization, amorphizing the Cantor alloy at the critical super-cooling rate of amorphization-crystallization transition could compatibilize both ductility and strength capabilities. Such a discovery sheds new lights on the material development and its mechanical performance optimization for industrial applications.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.