Triglyceride-lowering effect of rice protein due to the regulation of fatty acid uptake and transport of triglyceride in rats fed normal/oil-enriched diets
Bingxiao Liu, Zhengxuan Wang, Mingcai Liang, Lin Yang
{"title":"Triglyceride-lowering effect of rice protein due to the regulation of fatty acid uptake and transport of triglyceride in rats fed normal/oil-enriched diets","authors":"Bingxiao Liu, Zhengxuan Wang, Mingcai Liang, Lin Yang","doi":"10.1016/j.fochms.2025.100253","DOIUrl":null,"url":null,"abstract":"<div><div>Dysregulation of fatty acid uptake and triglyceride transport can induce excess triglyceride accumulation. We propose that rice protein might suppress fatty acid uptake and/or triglyceride transport. To elucidate potential mechanisms, expressions of cluster determinant 36 (CD36), microsomal triglyceride transfer protein (MTP), fatty acid transport protein-2 (FATP-2), fatty acid-binding protein-1 (FABP-1), lipoprotein lipase (LPL) and Niemann-Pick C1-like 1 (NPC1L1) were investigated in growing and adult male Wistar rats fed with caseins and rice proteins under normal and oil-enriched dietary conditions. After two weeks of feeding, rice protein depressed the gene and protein expressions of CD36, MTP, FATP-2, FABP-1 and NPC1L1, whereas rice protein up-regulated those of LPL. As a result, rice protein significantly reduced the concentrations of triglyceride and fatty acid in the plasma and liver (<em>P</em> < 0.05) as well as the deposit of perirenal, epididymal and mesenteric fat (<em>P</em> < 0.05). The present study demonstrates an association between the depression of fatty acid uptake and triglyceride transport and the triglyceride-lowering effect of rice protein.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"10 ","pages":"Article 100253"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566225000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dysregulation of fatty acid uptake and triglyceride transport can induce excess triglyceride accumulation. We propose that rice protein might suppress fatty acid uptake and/or triglyceride transport. To elucidate potential mechanisms, expressions of cluster determinant 36 (CD36), microsomal triglyceride transfer protein (MTP), fatty acid transport protein-2 (FATP-2), fatty acid-binding protein-1 (FABP-1), lipoprotein lipase (LPL) and Niemann-Pick C1-like 1 (NPC1L1) were investigated in growing and adult male Wistar rats fed with caseins and rice proteins under normal and oil-enriched dietary conditions. After two weeks of feeding, rice protein depressed the gene and protein expressions of CD36, MTP, FATP-2, FABP-1 and NPC1L1, whereas rice protein up-regulated those of LPL. As a result, rice protein significantly reduced the concentrations of triglyceride and fatty acid in the plasma and liver (P < 0.05) as well as the deposit of perirenal, epididymal and mesenteric fat (P < 0.05). The present study demonstrates an association between the depression of fatty acid uptake and triglyceride transport and the triglyceride-lowering effect of rice protein.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.