{"title":"Ti-Doped ZnO Nanowires: A Breakthrough in Non-Volatile Resistive Memory Application","authors":"Amitabha Nath;Madhuri Mishra;Subhananda Chakrabarti","doi":"10.1109/TNANO.2025.3544438","DOIUrl":null,"url":null,"abstract":"This paper explores the enhanced resistive memory capabilities of titanium (Ti)-doped zinc oxide (ZnO) nanowires (NWs) based devices. Utilizing pulsed laser deposition (PLD), ZnO NWs were fabricated on a ZnO seed film (SF), while Ti films were deposited using an electron beam evaporation technique. Two distinct devices, TZO NWs and ZnO NWs, were created with gold (Au) interdigitated electrodes (IDE). The TZO NWs based device exhibited superior resistive memory performances, showcasing a maximum window of 2.6 V at +10 V and 1.2 V at –10 V, surpassing the ZnO NWs based device. The introduction of Ti doping in ZnO NWs provided additional active sites for charge collection, introducing localized energy levels and enhancing overall device performance. These findings collectively highlight the scalability of the TZO NWs based device for next-generation non-volatile resistive memory (NVRM) applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"115-120"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10897917/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the enhanced resistive memory capabilities of titanium (Ti)-doped zinc oxide (ZnO) nanowires (NWs) based devices. Utilizing pulsed laser deposition (PLD), ZnO NWs were fabricated on a ZnO seed film (SF), while Ti films were deposited using an electron beam evaporation technique. Two distinct devices, TZO NWs and ZnO NWs, were created with gold (Au) interdigitated electrodes (IDE). The TZO NWs based device exhibited superior resistive memory performances, showcasing a maximum window of 2.6 V at +10 V and 1.2 V at –10 V, surpassing the ZnO NWs based device. The introduction of Ti doping in ZnO NWs provided additional active sites for charge collection, introducing localized energy levels and enhancing overall device performance. These findings collectively highlight the scalability of the TZO NWs based device for next-generation non-volatile resistive memory (NVRM) applications.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.