Qingxing Xiao , Sibao Yang , Yuwei Yang , Hongyu Ni , Zongdi Li , Chengwen Wang , Wuyang Liu , Yuxin Han , Yumei Li , Yonghong Zhang
{"title":"LncRNA A2ml2 inhibits fatty liver hemorrhage syndrome progression and function as ceRNA to target LPL by sponging miR-143-5p","authors":"Qingxing Xiao , Sibao Yang , Yuwei Yang , Hongyu Ni , Zongdi Li , Chengwen Wang , Wuyang Liu , Yuxin Han , Yumei Li , Yonghong Zhang","doi":"10.1016/j.psj.2025.105003","DOIUrl":null,"url":null,"abstract":"<div><div>Fatty liver hemorrhage syndrome (<strong>FLHS</strong>) is the most common metabolic diseases in laying hens during the late-laying period, and it causes a significant economic burden on the poultry industry. The competing endogenous RNA plays crucial roles in the occurrence and development of fatty liver. Based on the previously constructed lncRNA-miRNA-mRNA networks, we selected the axis of ENSGALT00000079786-<em>LPL</em>-miR-143-5p for further study to elucidate its mechanistic role in development of fatty liver. In this study, we identified a novel highly conserved lncRNA (ENSGALT00000079786) in poultry, which we designated as lncRNA A2ml2 based on its chromosomal location. Fluorescent in situ hybridization (<strong>FISH</strong>) revealed that lncRNA A2ml2 was localized in both the nucleus and cytoplasm. Dual-luciferase reporter assay validated the targeted relationship between lncRNA A2ml2, miR-143-5p, and the <em>LPL</em> gene. To further analyze the lncRNA A2ml2 and miR-143-5p function, lncRNA A2ml2 overexpression vector was successfully constructed and transfected into Leghorn male hepatocellular <strong>(LMH</strong>) cells, which could remarkably inhibit cellular lipid deposition was detected by oil red staining (<em>P</em> < 0.01), the opposite occurred for miR-143-5p (<em>P</em> < 0.01). qPCR demonstrated an inverse correlation between miR-143-5p expression and lncRNA A2ml2 expression, and confirmed that miR-143-5p directly target lncRNA A2ml2. Similarly, we found an inverse correlation between expression of <em>LPL</em> and the expression of miR-143-5p. To further investigate the interactions among these three factors and their effects on cellular lipid metabolism, we assessed the expression levels of <em>LPL</em> by co-transfecting lncRNA A2ml2 with miR-143-5p mimic and miR-143-5p mimic binding site mutants. Co-transfection experiments showed that miR-143-5p diminished the promoting effect of lncRNA A2ml2 on <em>LPL</em>. Meanwhile, miR-143-5p has the capacity to mitigate the suppressive impact of lncRNA A2ml2 overexpression on lipid accumulation in LMH cells. The results revealed that lncRNA A2ml2 attenuated hepatic lipid accumulation through negatively regulating miR-143-5p and enhancing <em>LPL</em> expression in LMH cells. Our findings offer novel insights into ceRNA-mediated in FLHS and identify a novel lncRNA as a potential molecular biomarker.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 5","pages":"Article 105003"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125002421","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fatty liver hemorrhage syndrome (FLHS) is the most common metabolic diseases in laying hens during the late-laying period, and it causes a significant economic burden on the poultry industry. The competing endogenous RNA plays crucial roles in the occurrence and development of fatty liver. Based on the previously constructed lncRNA-miRNA-mRNA networks, we selected the axis of ENSGALT00000079786-LPL-miR-143-5p for further study to elucidate its mechanistic role in development of fatty liver. In this study, we identified a novel highly conserved lncRNA (ENSGALT00000079786) in poultry, which we designated as lncRNA A2ml2 based on its chromosomal location. Fluorescent in situ hybridization (FISH) revealed that lncRNA A2ml2 was localized in both the nucleus and cytoplasm. Dual-luciferase reporter assay validated the targeted relationship between lncRNA A2ml2, miR-143-5p, and the LPL gene. To further analyze the lncRNA A2ml2 and miR-143-5p function, lncRNA A2ml2 overexpression vector was successfully constructed and transfected into Leghorn male hepatocellular (LMH) cells, which could remarkably inhibit cellular lipid deposition was detected by oil red staining (P < 0.01), the opposite occurred for miR-143-5p (P < 0.01). qPCR demonstrated an inverse correlation between miR-143-5p expression and lncRNA A2ml2 expression, and confirmed that miR-143-5p directly target lncRNA A2ml2. Similarly, we found an inverse correlation between expression of LPL and the expression of miR-143-5p. To further investigate the interactions among these three factors and their effects on cellular lipid metabolism, we assessed the expression levels of LPL by co-transfecting lncRNA A2ml2 with miR-143-5p mimic and miR-143-5p mimic binding site mutants. Co-transfection experiments showed that miR-143-5p diminished the promoting effect of lncRNA A2ml2 on LPL. Meanwhile, miR-143-5p has the capacity to mitigate the suppressive impact of lncRNA A2ml2 overexpression on lipid accumulation in LMH cells. The results revealed that lncRNA A2ml2 attenuated hepatic lipid accumulation through negatively regulating miR-143-5p and enhancing LPL expression in LMH cells. Our findings offer novel insights into ceRNA-mediated in FLHS and identify a novel lncRNA as a potential molecular biomarker.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.