A. Marcuzzi , M. Avramenko , C. De Santi , P. Moens , G. Meneghesso , E. Zanoni , M. Meneghini
{"title":"Interface-related VTH shift of SiC MOSFETs during constant current stress extracted from charge pumping measurements","authors":"A. Marcuzzi , M. Avramenko , C. De Santi , P. Moens , G. Meneghesso , E. Zanoni , M. Meneghini","doi":"10.1016/j.microrel.2025.115698","DOIUrl":null,"url":null,"abstract":"<div><div>This work focuses on the extraction of Threshold Voltage Shift due to interface trapping from Charge Pumping (CP) measured curves. The proposed mathematical approach analyzes the peak of the charge pumping curve, proportional to the average interface defects density, for estimating the threshold voltage shift due to interface trapping separately from the shift induced by oxide trapping. The high-frequency nature of CP measurements is therefore exploited for the detection of fast states. The analyzed devices are 4H-SiC n-channel MOSFETs and a custom, on-wafer, in-situ measurement setup is used. Under constant current gate stress, positive and negative charge trapping processes are identified; the role of a) charge trapping in the oxide and b) interface states generation is analyzed and described.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"168 ","pages":"Article 115698"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425001118","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work focuses on the extraction of Threshold Voltage Shift due to interface trapping from Charge Pumping (CP) measured curves. The proposed mathematical approach analyzes the peak of the charge pumping curve, proportional to the average interface defects density, for estimating the threshold voltage shift due to interface trapping separately from the shift induced by oxide trapping. The high-frequency nature of CP measurements is therefore exploited for the detection of fast states. The analyzed devices are 4H-SiC n-channel MOSFETs and a custom, on-wafer, in-situ measurement setup is used. Under constant current gate stress, positive and negative charge trapping processes are identified; the role of a) charge trapping in the oxide and b) interface states generation is analyzed and described.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.