Investigating new measures by jointly employing distinct and local heat transfer enhancement in latent heat thermal energy storage systems for buildings

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Tingsen Chen , Shuli Liu , Yihan Wang , Sheher Yar Khan , Mahesh Kumar , Yongliang Shen , Wenjie Ji , Mahroo Eftekhari , Yuliang Zou
{"title":"Investigating new measures by jointly employing distinct and local heat transfer enhancement in latent heat thermal energy storage systems for buildings","authors":"Tingsen Chen ,&nbsp;Shuli Liu ,&nbsp;Yihan Wang ,&nbsp;Sheher Yar Khan ,&nbsp;Mahesh Kumar ,&nbsp;Yongliang Shen ,&nbsp;Wenjie Ji ,&nbsp;Mahroo Eftekhari ,&nbsp;Yuliang Zou","doi":"10.1016/j.enbuild.2025.115555","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issue of decreasing thermal storage capacity during the enhancing of latent heat thermal energy storage (LHTES) in buildings. This study proposes a hybrid two-step method to mitigate this effect. Step one segregates LHTES into fusible and refractory zones based on Phase change material (PCM) melting behavior. Step two employs local enhancements tailored to zone heat transfer characteristics. In this paper, solar radiation intensity, metal foam porosity, and nanoparticle mass fraction effects and sensitivity analysis on locally enhanced LHTES are numerically examined. Five performance indicators were used to evaluate. The results show that employing hybrid two-step method is effective to enhance the synergistic effect on natural convection and heat conduction. When the porosity increases from 92% to 98%, the energy storage capacity can be increased by 10.25%, the energy storage rate is increased by 8.61%, while melting time increased by 4.4%. Every 1 wt% of Graphene nano-particle adds, the heat transfer rate is increased by 0.6%, while energy storage decreases by 3%. The hierarchy of parameters influencing the performance of the LHTES system is as follows: solar radiation intensity holds the highest significance (accounting for 65.31%), followed by porosity (accounting for 31.25%), and then the mass fraction of nanoparticles (accounting for 3.2%). These findings provide valuable insights for the design and optimization of building energy storage systems.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"335 ","pages":"Article 115555"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825002853","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issue of decreasing thermal storage capacity during the enhancing of latent heat thermal energy storage (LHTES) in buildings. This study proposes a hybrid two-step method to mitigate this effect. Step one segregates LHTES into fusible and refractory zones based on Phase change material (PCM) melting behavior. Step two employs local enhancements tailored to zone heat transfer characteristics. In this paper, solar radiation intensity, metal foam porosity, and nanoparticle mass fraction effects and sensitivity analysis on locally enhanced LHTES are numerically examined. Five performance indicators were used to evaluate. The results show that employing hybrid two-step method is effective to enhance the synergistic effect on natural convection and heat conduction. When the porosity increases from 92% to 98%, the energy storage capacity can be increased by 10.25%, the energy storage rate is increased by 8.61%, while melting time increased by 4.4%. Every 1 wt% of Graphene nano-particle adds, the heat transfer rate is increased by 0.6%, while energy storage decreases by 3%. The hierarchy of parameters influencing the performance of the LHTES system is as follows: solar radiation intensity holds the highest significance (accounting for 65.31%), followed by porosity (accounting for 31.25%), and then the mass fraction of nanoparticles (accounting for 3.2%). These findings provide valuable insights for the design and optimization of building energy storage systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信