Li Ge, Chuanling Jiang, Chengjie Ma, Chun-Yue Han, Yi Gong, Lili Zhu*, Qi Liu* and Fei-Long Liu*,
{"title":"Ultrasensitive Determination of Amino Acids in Single Cells by Chemical Isotope Labeling with Liquid Chromatography Mass Spectrometry Analysis","authors":"Li Ge, Chuanling Jiang, Chengjie Ma, Chun-Yue Han, Yi Gong, Lili Zhu*, Qi Liu* and Fei-Long Liu*, ","doi":"10.1021/acs.analchem.4c0644110.1021/acs.analchem.4c06441","DOIUrl":null,"url":null,"abstract":"<p >Amino acids play multiple critical roles in the regulation of various metabolic pathways and physiological processes in living organisms. Mass spectrometry (MS) has become the most pioneering platform for amino acid analysis. However, the simultaneous and sensitive determination of amino acids is still challenging because of their structural similarity and broad ranges of concentrations. To this end, a pair of isotope labeling reagents, <i>d</i><sub>0</sub>/<i>d</i><sub>3</sub>-2-((diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2<i>H</i>-pyrido[3,4-<i>b</i>]indol-2-yl) methanone (DMPI/<i>d</i><sub>3</sub>-DMPI), were applied to label amino acid metabolites. The diazo groups on the pair of isotopomers (DMPI/<i>d</i><sub>3</sub>-DMPI) can specifically react with the carboxyl groups on the amino acids. The results showed that the retention on reversed-phase column were enhanced and the detection sensitivities of 19 amino acids were increased benefiting from DMPI labeling strategy that transfers the hydrophobic indole heterocycle group of DMPI to the hydrophilic compounds of amino acids. The obtained limits of detection (LODs) of amino acids were in the range of 0.002–0.082 fmol. With this established method, we achieved the sensitive detection of amino acids in a single HUVE cell. Meanwhile, we found that the contents of amino acids in the serum of premature neonates were higher compared to normal neonates. Overall, this developed method provides great support of detection tool for the clinical metabolomic study of amino acids and the investigation of dynamic changes of amino acid metabolism in single cells.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 9","pages":"5171–5178 5171–5178"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c06441","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Amino acids play multiple critical roles in the regulation of various metabolic pathways and physiological processes in living organisms. Mass spectrometry (MS) has become the most pioneering platform for amino acid analysis. However, the simultaneous and sensitive determination of amino acids is still challenging because of their structural similarity and broad ranges of concentrations. To this end, a pair of isotope labeling reagents, d0/d3-2-((diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl) methanone (DMPI/d3-DMPI), were applied to label amino acid metabolites. The diazo groups on the pair of isotopomers (DMPI/d3-DMPI) can specifically react with the carboxyl groups on the amino acids. The results showed that the retention on reversed-phase column were enhanced and the detection sensitivities of 19 amino acids were increased benefiting from DMPI labeling strategy that transfers the hydrophobic indole heterocycle group of DMPI to the hydrophilic compounds of amino acids. The obtained limits of detection (LODs) of amino acids were in the range of 0.002–0.082 fmol. With this established method, we achieved the sensitive detection of amino acids in a single HUVE cell. Meanwhile, we found that the contents of amino acids in the serum of premature neonates were higher compared to normal neonates. Overall, this developed method provides great support of detection tool for the clinical metabolomic study of amino acids and the investigation of dynamic changes of amino acid metabolism in single cells.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.