Palm-based nanocrystal cellulose-stabilized Pickering emulsions: investigating characteristics, stability and in vitro digestion for potential application as substitution of coconut milk.

IF 3.3 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Wai-Ting Chong, Lee Fong Siow, Eng-Seng Chan, Beng Ti Tey, Yee-Ying Lee
{"title":"Palm-based nanocrystal cellulose-stabilized Pickering emulsions: investigating characteristics, stability and in vitro digestion for potential application as substitution of coconut milk.","authors":"Wai-Ting Chong, Lee Fong Siow, Eng-Seng Chan, Beng Ti Tey, Yee-Ying Lee","doi":"10.1002/jsfa.14200","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coconut milk encounters challenges related to global sustainability and its high fat content, which may potentially have adverse effects on health. Nanocrystal cellulose (NCC) has gained attention due to its amphiphilic nature, high aspect ratio and large elastic modulus, making it a beneficial natural stabilizer for emulsion stabilization. Recent studies have demonstrated that NCC plays a role in modulating gastrointestinal digestion. Therefore, this study aims to produce a Pickering emulsion stabilized by NCC (NCC-PE) as a potential substitute for coconut milk. The study evaluated the capability of NCC in stabilizing a Pickering emulsion. NCC-PE was exposed to simulated gastrointestinal digestion and the results were compared with those for lecithin-stabilized Pickering emulsion and commercial coconut milk.</p><p><strong>Results: </strong>In terms of d<sub>32</sub>, viscosity and creaming index, 4 g kg<sup>-1</sup> of NCC effectively stabilized 200 g kg<sup>-1</sup> (20%) of palm oil to formulate Pickering emulsions with a mean d<sub>32</sub> of 4 μm and zeta potential of -49.09 ± 1.63 mV and demonstrating high stability against creaming. NCC-PE remains stable for at least 14 days when stored at room temperature (25 °C). The d<sub>32</sub> and zeta potential of Pickering emulsions were evaluated under different pH (4-10), temperature (-18 to 75 °C) and ionic strength (0-250 mmol L<sup>-1</sup>), exhibiting satisfactory performance and high stability against creaming, except at pH 2 and 100 °C. Results indicated slower lipid hydrolysis in NCC-PE (62.47 ± 2.5%) compared with coconut milk (67.9 ± 1.14%) in a simulated gastrointestinal model.</p><p><strong>Conclusion: </strong>Our results highlight the potential of NCC-PE to act as substitute for coconut milk, influencing the release of free fatty acids. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</p>","PeriodicalId":17725,"journal":{"name":"Journal of the Science of Food and Agriculture","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Science of Food and Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jsfa.14200","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Coconut milk encounters challenges related to global sustainability and its high fat content, which may potentially have adverse effects on health. Nanocrystal cellulose (NCC) has gained attention due to its amphiphilic nature, high aspect ratio and large elastic modulus, making it a beneficial natural stabilizer for emulsion stabilization. Recent studies have demonstrated that NCC plays a role in modulating gastrointestinal digestion. Therefore, this study aims to produce a Pickering emulsion stabilized by NCC (NCC-PE) as a potential substitute for coconut milk. The study evaluated the capability of NCC in stabilizing a Pickering emulsion. NCC-PE was exposed to simulated gastrointestinal digestion and the results were compared with those for lecithin-stabilized Pickering emulsion and commercial coconut milk.

Results: In terms of d32, viscosity and creaming index, 4 g kg-1 of NCC effectively stabilized 200 g kg-1 (20%) of palm oil to formulate Pickering emulsions with a mean d32 of 4 μm and zeta potential of -49.09 ± 1.63 mV and demonstrating high stability against creaming. NCC-PE remains stable for at least 14 days when stored at room temperature (25 °C). The d32 and zeta potential of Pickering emulsions were evaluated under different pH (4-10), temperature (-18 to 75 °C) and ionic strength (0-250 mmol L-1), exhibiting satisfactory performance and high stability against creaming, except at pH 2 and 100 °C. Results indicated slower lipid hydrolysis in NCC-PE (62.47 ± 2.5%) compared with coconut milk (67.9 ± 1.14%) in a simulated gastrointestinal model.

Conclusion: Our results highlight the potential of NCC-PE to act as substitute for coconut milk, influencing the release of free fatty acids. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
4.90%
发文量
634
审稿时长
3.1 months
期刊介绍: The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights in these areas, with particular emphasis on interdisciplinary studies at the agriculture/ food interface. Published for SCI by John Wiley & Sons Ltd. SCI (Society of Chemical Industry) is a unique international forum where science meets business on independent, impartial ground. Anyone can join and current Members include consumers, business people, environmentalists, industrialists, farmers, and researchers. The Society offers a chance to share information between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, materials, chemicals, environmental science and safety. As well as organising educational events, SCI awards a number of prestigious honours and scholarships each year, publishes peer-reviewed journals, and provides Members with news from their sectors in the respected magazine, Chemistry & Industry . Originally established in London in 1881 and in New York in 1894, SCI is a registered charity with Members in over 70 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信