Impact on silica particle physical characteristics of co-condensed alkoxide precursors†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Francisco Bevilacqua, Cynthia Cibaka-Ndaya, Paula Sanz Camacho, Sabrina Lacomme, Etienne Durand, Jean-Bernard Ledeuil, Joachim Allouche, Cédric Boissière, Clément Sanchez and Glenna L. Drisko
{"title":"Impact on silica particle physical characteristics of co-condensed alkoxide precursors†","authors":"Francisco Bevilacqua, Cynthia Cibaka-Ndaya, Paula Sanz Camacho, Sabrina Lacomme, Etienne Durand, Jean-Bernard Ledeuil, Joachim Allouche, Cédric Boissière, Clément Sanchez and Glenna L. Drisko","doi":"10.1039/D4TC04305G","DOIUrl":null,"url":null,"abstract":"<p >Understanding the condensation process of two precursors in the Stöber process is crucial to enhance the complexity and applicability of silica hybrids. We present a simple and effective method to prepare functional silica hybrid particles with tunable properties through the co-condensation of tetraethoxysilane and an organoalkoxide precursor using a modified Stöber process. Three organoalkoxide precursors have been studied: (3-mercaptopropyl)triethoxysilane, (3-cyanopropyl)triethoxysilane, and (3-aminopropyl)triethoxysilane. All three investigated systems produce functional silica hybrid particles, as confirmed by various characterization techniques. Scanning transmission electron microscopy and nitrogen sorption analysis demonstrated that features such as the microstructure could be tailored by the careful selection of the second precursor. A drastic increase in the specific surface area can be obtained with 3cyanopropyltriethoxysilane: 270 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> compared to 17 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> in the unfunctionalized silica particles. Other important characteristics such as the degree of condensation and surface charge can also be influenced by precursor choice. The enhanced reactivity of 3-aminopropyltriethoxysilane yields a higher degree of particle functionalization. Nanoscale chemical mapping has been performed using energy-dispersive Xray spectroscopy and Auger spectroscopy. Homogeneous distribution of the functionalities within the hybrid particles occurs. The present work gives tools to easily tailor functional silica particles, thus providing simple ways to tune their properties to meet a wide range of applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 14","pages":" 7318-7326"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881562/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04305g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the condensation process of two precursors in the Stöber process is crucial to enhance the complexity and applicability of silica hybrids. We present a simple and effective method to prepare functional silica hybrid particles with tunable properties through the co-condensation of tetraethoxysilane and an organoalkoxide precursor using a modified Stöber process. Three organoalkoxide precursors have been studied: (3-mercaptopropyl)triethoxysilane, (3-cyanopropyl)triethoxysilane, and (3-aminopropyl)triethoxysilane. All three investigated systems produce functional silica hybrid particles, as confirmed by various characterization techniques. Scanning transmission electron microscopy and nitrogen sorption analysis demonstrated that features such as the microstructure could be tailored by the careful selection of the second precursor. A drastic increase in the specific surface area can be obtained with 3cyanopropyltriethoxysilane: 270 m2 g−1 compared to 17 m2 g−1 in the unfunctionalized silica particles. Other important characteristics such as the degree of condensation and surface charge can also be influenced by precursor choice. The enhanced reactivity of 3-aminopropyltriethoxysilane yields a higher degree of particle functionalization. Nanoscale chemical mapping has been performed using energy-dispersive Xray spectroscopy and Auger spectroscopy. Homogeneous distribution of the functionalities within the hybrid particles occurs. The present work gives tools to easily tailor functional silica particles, thus providing simple ways to tune their properties to meet a wide range of applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信