Ingenane Diterpenoids from Euphorbia peplus as Potential New CHK1 Inhibitors That Sensitize Cancer Cells to Chemotherapy.

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL
Journal of Natural Products Pub Date : 2025-03-28 Epub Date: 2025-03-08 DOI:10.1021/acs.jnatprod.4c01343
Mi Zhou, Yanlan Yang, Shoulun He, Qiannan Xu, Chunchun Du, Wenjing Tian, Haifeng Chen
{"title":"Ingenane Diterpenoids from <i>Euphorbia peplus</i> as Potential New CHK1 Inhibitors That Sensitize Cancer Cells to Chemotherapy.","authors":"Mi Zhou, Yanlan Yang, Shoulun He, Qiannan Xu, Chunchun Du, Wenjing Tian, Haifeng Chen","doi":"10.1021/acs.jnatprod.4c01343","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorylation of checkpoint kinase 1 at Ser-345 (p-CHK1(S345)) mediates the replication stress response in cancer cells, leading to chemotherapy resistance. Therefore, finding inhibitors of p-CHK1(S345) is currently a promising strategy to prevent acquired drug resistance. In this study, 14 ingenane diterpenoids (<b>1</b>-<b>14</b>), involving two undescribed compounds possessing an unprecedented exocyclic double bond Δ<sup>6(20)</sup>, were identified from <i>Euphorbia peplus</i>. The inhibitory effects of the isolated compounds on p-CHK1(S345) and their structure-activity relationship (SAR) were investigated. Compounds <b>7</b> and <b>8</b> presented the strongest inhibitory effects, abrogated cell cycle arrest, and caused the accumulation of DNA damage, improving the sensitivity of cancer cells to chemotherapeutic drugs. An <i>in vivo</i> assay confirmed the enhancement of <b>8</b> on the anticancer effect of topotecan via blocking of p-CHK1(S345). Mechanistically, <b>8</b> increased CHK1 ubiquitination to inhibit p-CHK1(S345) via activation of protein kinase C (PKC). PKC activation was first found to enhance CHK1 ubiquitination to block p-CHK1(S345). Above all, this finding not only indicates that compound <b>8</b> could be developed as a novel CHK1 inhibitor but also reveals a previously unrecognized role of PKC in regulating cancer chemotherapy sensitivity.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":"688-705"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c01343","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorylation of checkpoint kinase 1 at Ser-345 (p-CHK1(S345)) mediates the replication stress response in cancer cells, leading to chemotherapy resistance. Therefore, finding inhibitors of p-CHK1(S345) is currently a promising strategy to prevent acquired drug resistance. In this study, 14 ingenane diterpenoids (1-14), involving two undescribed compounds possessing an unprecedented exocyclic double bond Δ6(20), were identified from Euphorbia peplus. The inhibitory effects of the isolated compounds on p-CHK1(S345) and their structure-activity relationship (SAR) were investigated. Compounds 7 and 8 presented the strongest inhibitory effects, abrogated cell cycle arrest, and caused the accumulation of DNA damage, improving the sensitivity of cancer cells to chemotherapeutic drugs. An in vivo assay confirmed the enhancement of 8 on the anticancer effect of topotecan via blocking of p-CHK1(S345). Mechanistically, 8 increased CHK1 ubiquitination to inhibit p-CHK1(S345) via activation of protein kinase C (PKC). PKC activation was first found to enhance CHK1 ubiquitination to block p-CHK1(S345). Above all, this finding not only indicates that compound 8 could be developed as a novel CHK1 inhibitor but also reveals a previously unrecognized role of PKC in regulating cancer chemotherapy sensitivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信