Rapid analysis of starch, sugar, and amylose in fresh yam tubers and boiled yam texture using near-infrared hyperspectral imaging and chemometrics

IF 4 2区 农林科学 Q2 CHEMISTRY, APPLIED
Michael Adesokan , Emmanuel Oladeji Alamu , Bolanle Otegbayo , Asrat Asfaw , Michael Olutoyin Afolabi , Segun Fawole , Karima Meghar , Dominique Dufour , Oluwatoyin Ayetigbo , Fabrice Davrieux , Busie Maziya-Dixon
{"title":"Rapid analysis of starch, sugar, and amylose in fresh yam tubers and boiled yam texture using near-infrared hyperspectral imaging and chemometrics","authors":"Michael Adesokan ,&nbsp;Emmanuel Oladeji Alamu ,&nbsp;Bolanle Otegbayo ,&nbsp;Asrat Asfaw ,&nbsp;Michael Olutoyin Afolabi ,&nbsp;Segun Fawole ,&nbsp;Karima Meghar ,&nbsp;Dominique Dufour ,&nbsp;Oluwatoyin Ayetigbo ,&nbsp;Fabrice Davrieux ,&nbsp;Busie Maziya-Dixon","doi":"10.1016/j.jfca.2025.107425","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigated the use of the near-infrared hyperspectral imaging (NIR-HSI) technique (932 – 1721 nm) to rapidly evaluate the starch, sugar, and amylose content of fresh, intact yam tubers and the textural qualities of boiled yam. These quality characteristics often influence consumers’ and farmers’ acceptance of new yam varieties. Traditional methods for their determination are expensive, time-consuming, and sometimes subjective. The NIR-HSI system combined with three Effective Wavelengths (EWs) selection algorithms, including Successive Projections Algorithms (SPA), Competitive Adaptive Reweighted Sampling (CARS), and Boruta Algorithm (BA), was used to extract the important spectral features. The PLSR-SPA-CARS gave the best prediction models in most cases, with a coefficient of determination in prediction (R<sup>2</sup>pre) of 0.952 for starch, 0.935 for sugar, and 0.978 for amylose content, respectively. The spatial distribution of starch, sugar, and amylose was visualized using the optimized PLSR model. Additionally, PLSR-SNV-SG (Standard Normal Variate and Savitzsky-Golay) showed the best R<sup>2</sup> pred of 0.846 for peak force (hardness) and 0.538 for the area under the curve (chewiness) of boiled yam. This study has demonstrated the potential of NIR-HSI techniques to rapidly predict the quality of fresh yam and its boiled food product.</div></div>","PeriodicalId":15867,"journal":{"name":"Journal of Food Composition and Analysis","volume":"142 ","pages":"Article 107425"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Composition and Analysis","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889157525002406","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigated the use of the near-infrared hyperspectral imaging (NIR-HSI) technique (932 – 1721 nm) to rapidly evaluate the starch, sugar, and amylose content of fresh, intact yam tubers and the textural qualities of boiled yam. These quality characteristics often influence consumers’ and farmers’ acceptance of new yam varieties. Traditional methods for their determination are expensive, time-consuming, and sometimes subjective. The NIR-HSI system combined with three Effective Wavelengths (EWs) selection algorithms, including Successive Projections Algorithms (SPA), Competitive Adaptive Reweighted Sampling (CARS), and Boruta Algorithm (BA), was used to extract the important spectral features. The PLSR-SPA-CARS gave the best prediction models in most cases, with a coefficient of determination in prediction (R2pre) of 0.952 for starch, 0.935 for sugar, and 0.978 for amylose content, respectively. The spatial distribution of starch, sugar, and amylose was visualized using the optimized PLSR model. Additionally, PLSR-SNV-SG (Standard Normal Variate and Savitzsky-Golay) showed the best R2 pred of 0.846 for peak force (hardness) and 0.538 for the area under the curve (chewiness) of boiled yam. This study has demonstrated the potential of NIR-HSI techniques to rapidly predict the quality of fresh yam and its boiled food product.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Composition and Analysis
Journal of Food Composition and Analysis 工程技术-食品科技
CiteScore
6.20
自引率
11.60%
发文量
601
审稿时长
53 days
期刊介绍: The Journal of Food Composition and Analysis publishes manuscripts on scientific aspects of data on the chemical composition of human foods, with particular emphasis on actual data on composition of foods; analytical methods; studies on the manipulation, storage, distribution and use of food composition data; and studies on the statistics, use and distribution of such data and data systems. The Journal''s basis is nutrient composition, with increasing emphasis on bioactive non-nutrient and anti-nutrient components. Papers must provide sufficient description of the food samples, analytical methods, quality control procedures and statistical treatments of the data to permit the end users of the food composition data to evaluate the appropriateness of such data in their projects. The Journal does not publish papers on: microbiological compounds; sensory quality; aromatics/volatiles in food and wine; essential oils; organoleptic characteristics of food; physical properties; or clinical papers and pharmacology-related papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信